Hydroeconomic Modeling of Perennial Crop Dynamics and GSP Demand Management Under SGMA

Duncan MacEwan

California Water and Environmental Modeling Forum 29th Annual Meeting

CWEMF | September 23 - 25, 2024

- 1. Demand management
- 2. Hydroeconomic modeling
- 3. Permanent crops and economic impacts under SGMA

DEMAND MANAGEMENT

What is demand management?

Demand Management

• Programs that reduce net groundwater pumping (pumping net of recharge), or alternatively, net depletion.

Implementation

- Allocations
- Other incentives
- Water trading is not, by itself, a demand management program

Program interest

- GSP implementation
- Supply augmentation and sustainability through demand management

GSP Implementation

- Initial focus is on projects (e.g., recharge) to augment supplies
- Demand management planned in some areas and may become reality in others

	GSP Estimated Average	GSP Estimated Capital Cost
GSP Implementation	Annual Yield (TAF/Y)	(\$Millions)
Demand Management	480 (22%)	\$185
Supply Expansion	1,675 (78%)	\$3,680
Total	2,150	\$3,860

Central Valley Subbasins using raw GSP data

Who is considering demand management and what types of programs? Statewide impacts

<u>Vina Subbasin</u> Extend Orchard Replacement Program

<u>Napa Valley Subbasin</u>

Groundwater Pumping Reduction and Water Conservation Workplans

Madera County GSA

Allocations, Voluntary Land Repurposing, LandFlex, Multibenefit Land Repurposing

MAGSA Fees, water measurement, potential water market

for water project

modeling

HYDROECONOMIC MODELING

Why do we need hydroeconomic modeling?

Physical conditions

What is the problem?

Defined in:

- GSP water balances
- Statute, regulations, policy

Project considerations

Projects and management actions (GSP)

Project feasibility / impact analyses (e.g., LTO, CASP)

Implementation

Project benefits and feasibility determinations

How much demand management vs supply augmentation?

Demand management program design

SWAP Model: A Brief History

CVPM

Production function: water – irrigation technology isoquant PMP calibration: linear marginal cost

SWAP 6

Production function: CES, constant returns to scale PMP calibration: exponential Supply response: elasticity tradeoff

SWAP 6.1

Data update to SWAP 6; Code and calibration changes

Production function: CES, decreasing returns to scale PMP calibration: DRS Supply response: calibration to elasticities Permanent crop dynamics Geospatial data calibration Improved crop market linkage for agricultural modeling

Current Modeling Framework

- Economics integrated with biophysical parameters
 - Calsim 2 and 3, C2VSim, SVSim, local groundwater models, water balances, GSA data
 - Hydroeconomics
 - Calibration under SWAP-RTS
 - To current conditions and response
 - Crop markets (e.g., dairy)
 - Crop dynamics

Field Level RTS Framework

- Why field level?
 - Geospatial data availability
 - Permanent plantings
 - Spatial detail for hydroeconomic evaluation
 - SGMA, water trading

This work was supported, in part, by the USDA National Institute of Food and Agriculture, project #1016467. Paper Forthcoming.

- Example: Roza Irrigation District (Yakima)
 - Decreasing returns to scale CES production function for each crop and region
 - Field aggregated continuous production functions and water supply functions
 - Discrete field-level model with differing water use, cost, and production for regional and field-specific outcomes

CALIFORNIA EXAMPLE: PERMANENT CROPS & SGMA IMPACTS

Permanent Crop Dynamics

• Permanent crops are a capital asset

Environment • Resources • Agriculture

Age Distribution of Current Plantings

Environment • Resources • Agriculture

14

SWSD Example

Example: permanent crops only (almond proxy) under hypothetical

- NPV loss in gross returns
 - \$26.3 M, phased
 - \$35.9 M, aggressive

\$9.7 million present value savings

CWEMF | September 23 - 25, 2024

15

fixed/flat allocation

MCGSA Example

MCGSA Example 140,000 120,000 100,000 Acre Feet 80,000 60,000 40,000 20,000 $\partial \rho_{\mu} \partial \rho_{\nu} \partial \rho_$ -Perennial Demand (w/o Replant) --- Phased Supply - · Agressive Supply

Example: permanent crops only (almond proxy) under hypothetical fixed/flat allocation

16

- NPV loss in gross returns
 - \$64.5 M, phased
 - \$98.7 M, aggressive
 - \$34.2 million present value savings

Summary

Hydroeconomic modeling

- Supports GSP program development
- Integrated with state and federal water project evaluation
- Economic impacts
 - Gradual implementation allows time to recoup capital investments
 - Lessen impacts for local communities
 - Substantial implications for state and federal projects and CALSIM integration

THANK YOU

Duncan MacEwan ERA Economics duncan@eraeconomics.com

