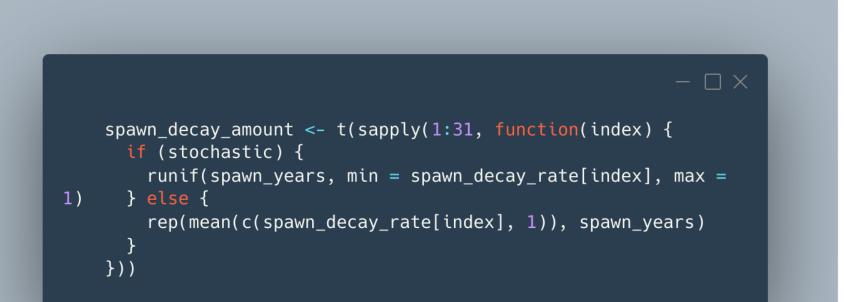


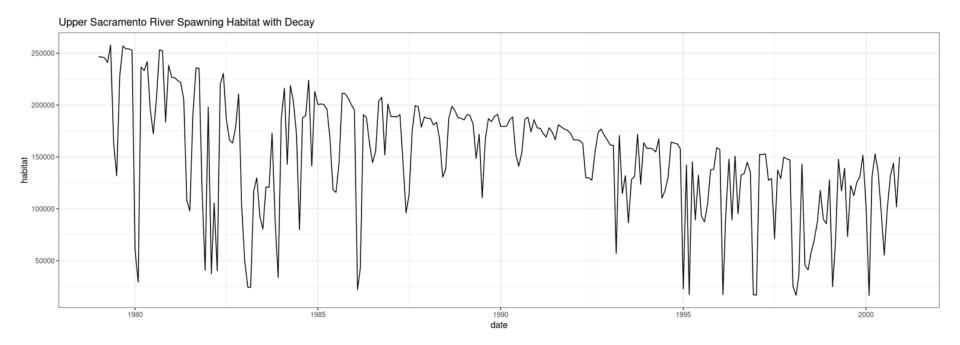
Modeling Chinook Salmon Spawning Habitat Decay

Emanuel Rodriguez (FlowWest) & Rod Wittler (USBR)

Spawning Habitat in the DSM


- Females create redds in available spawning habitat
- DSM accounts for redd capacity
 - If exceeded, late arriving females destroy earlier redds
- Juvenile production is a function of:
 - Number of intact redds
 - Female fecundity
 - Egg-to-fry Survival

Previous Approach to Spawning Habitat Decay


- Probabilistic model
 - Random decay rate between 0-5% annually
- Disconnected from hydrology and sediment transport
- Applied uniformly across all areas

Spawning Decay Rates		
watershed	decay rate	
Upper Sacramento River	0.9472944	
Antelope Creek	0.9898985	
Battle Creek	0.9898985	
Bear Creek	0.9898985	
Big Chico Creek	0.9898985	
Butte Creek	0.9898985	
Clear Creek	0.9472944	
and 26 more rows		

Previous Approach to Spawning Habitat Decay

Previous Approach to Spawning Habitat Decay

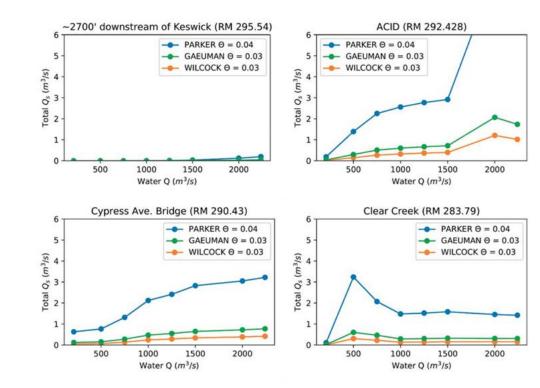
Limitations

- Did not accurately represent real-world dynamics
- Failed to show large losses of spawning habitat during high flow years
- Lacked link to sediment transport processes
- Did not account for watershed-specific characteristics
- Unable to reflect the impact of extreme hydrological events

Need for a New Approach

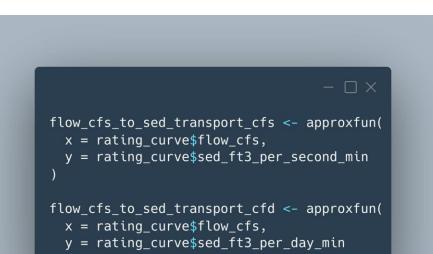
A new approach should:

- Be Linked to hydrology
- Be Linked to sediment transport
- Better represent unique characteristics at watershed level
- Be easily updated when new data becomes available

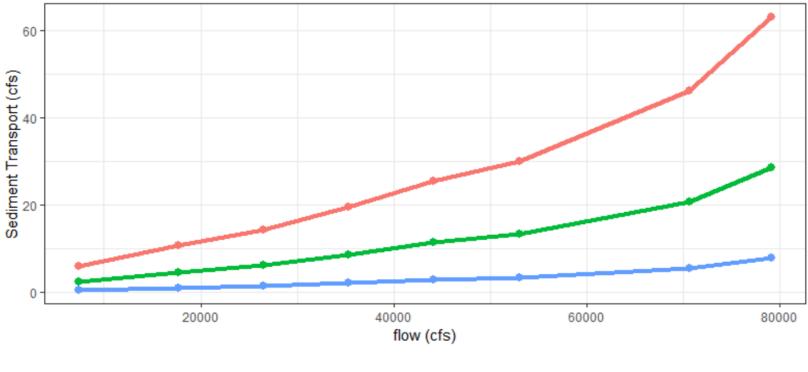

Methods Overview

Sacramento River Model Augmentation Study

- Based on Sacramento River Gravel Augmentation Study (2020)
- Worked with CDFW and Reclamation experts
- Used general sediment transport rates for Sacramento River
 - Reclamation's Sacramento River Bedload Analysis of NODOS Alternatives (2011)
 - Empirical spawning habitat data and observations
- Overall approach is to take a raw transport curve and perform a series reductions based on observed events and watershed characteristics


Sediment Transport Capacity

- Data source: Reclamation's Sacramento River Gravel Augmentation Study
 - (2020)Used SRH-2D hydraulic and sediment transport model
- Created generalized transport capacity rating curves:
 - Based on four different models (Parker, Wilcock, Gaeuman)
- Selected minimum transport capacity curve for further analysis after discussions with Reclamation and CDFW experts


Sediment Transport Capacity

Flow (cfs)	Parker	Wilcock	Gaeuman	River Mile
210	0.000071	0.000096	0.000246	283.33
500	0.004994	0.001350	0.003240	283.33
750	0.036029	0.005301	0.013065	283.33
1000	0.150990	0.016174	0.039437	283.33
1250	0.368879	0.036586	0.085184	283.33
355 additional rows not shown				

Sediment Transport Capacity Rating Curves

Flow (cfs) to Transport (cfs)

🔶 Max (CFS) 🔹 Avg (CFS) 🔹 Min (CFS)

First Scaledown: Sediment Particle Size

- Quantify the fraction of different sediment size classes expected to be mobile across a range of flows in four study reaches
 - Obtained from Sacramento River Gravel Augmentation Study (2020)
- 40mm sediment particles was selected as the best representative of salmonid spawning gravel size.

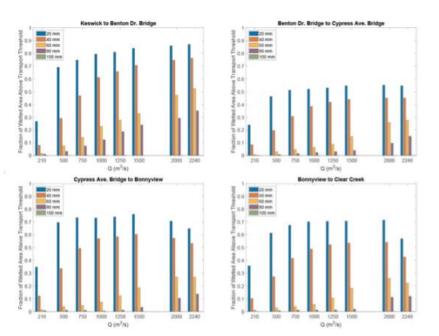
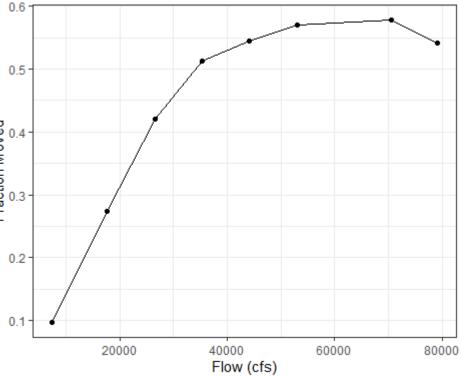


Figure 29. The fraction of each reach that exceeds a threshold Shields stress of $\theta_r = 0.04$ for a range of grain sizes and flows. Finer gravel is mobile over much of the river at flows of 500 m³/s and above. The least mobile reach is Benton Dr. to Cypress Avenue which includes Turtle Bay and Park Marina.

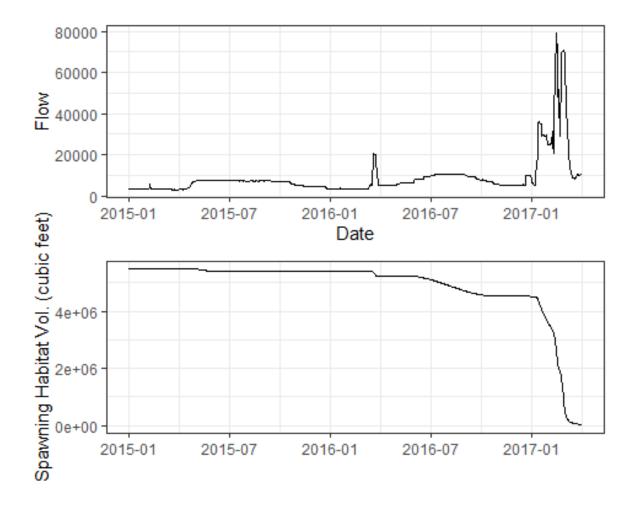

Spawning Habitat Sediment Particle Size

- Digitized plots to obtain tabular data
- Relationships between flow and proportion of sediment mobilized were generalized
- Summarized by selecting the minimum, average, and maximum values for each flow across all four relationships

Flow (m3s)	Fraction	Reach
210	0.08060183	kes_to_ben
500	0.28909189	kes_to_ben
750	0.46587856	kes_to_ben
1000	0.60881247	kes_to_ben
1250	0.65502418	kes_to_ben
1500	0.70445997	kes_to_ben

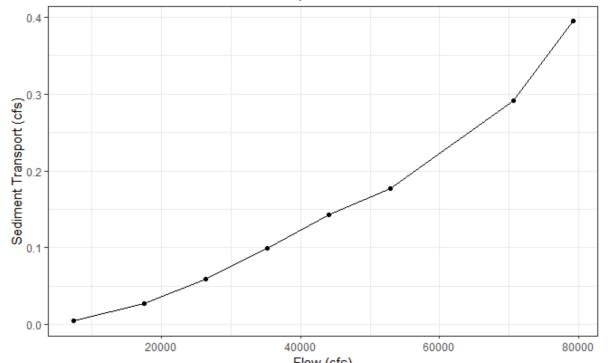
Spawning Habitat Sediment Particle Size

			-	0.6
flow_cfs	min_fraction	avg_fraction	max_fraction	
				0.5
7416.15	0.08060183	0.09683229	0.1217712	B 0.4
17657.50	0.19411461	0.27333493	0.3368477	4.0 cm E.0 ction B.0.0 cm E.0 ction B.0.0 cm E.0 cm
26486.25	0.30252969	0.41972416	0.4928835	0.2
35315.00	0.38306660	0.51274475	0.6088125	0.1
				20000

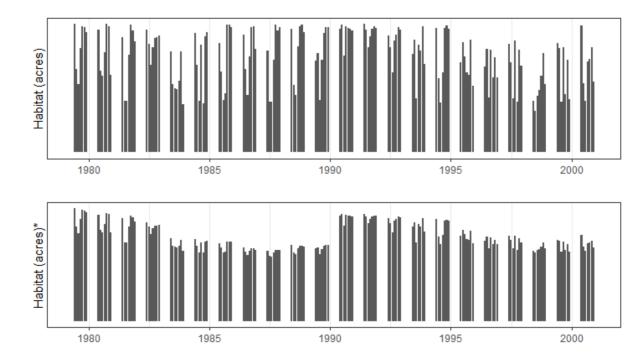


Observed Sediment Transport

- Evaluated known spawning gravel augmentation event
 - Market Street, Sacramento River
 - 254,690 square meters of spawningsized sediment added in 2015
 - Completely removed by April 2017
- Used to calibrate sediment transport model:
 - Developed function to determine scaling factor
 - Adjusted sediment transport capacity for fraction of sediment mobilized
 - Aimed for complete transport of augmented sediment (2015-2017)


```
objective_func <- function(threshold) {</pre>
 scaled_sed_transport <- rating_curve$sed_ft3_per_day_min *</pre>
   gravel_size_scaledown_summarized$avg_fraction
 calib_sed_curve <- approxfun(rating_curve$flow_cfs,</pre>
                         scaled sed transport *
                           rep(threshold.
                                length(rating_curve$flow_cfs)))
 starting_volume <- (254690.3 * 10.764) * 2</pre>
 calib kwk sed transport <- tibble(</pre>
   date = kwk usgs$Date.
   flow = kwk_usgs$Flow,
   sediment_transport_f3_day = calib_sed_curve(flow)
   mutate(sediment_transport_f3_day = ifelse(is.na(sediment_transport_f3_day), 0,
sediment_transport_f3_day))
 calib_kwk_sed_transport_sim <- calib_kwk_sed_transport |>
   filter(date >= "2015-01-01", date <= "2017-04-01") |>
   mutate(sediment_transport_f3_day = ifelse(is.na(sediment_transport_f3_day), 0,
sediment_transport_f3_day),
           sediment_transport_f3_day_accum = cumsum(sediment_transport_f3_day),
          current_vol = starting_volume - sediment_transport_f3_day_accum)
 last_volume <- calib_kwk_sed_transport_sim |> tail(1) |> pull(current_vol)
 return(abs(last_volume - 0))
```

We want to optimize the function by the threshold value that results # in the volumne nearest zero. result <- optimise(objective_func, interval = c(0, 1), maximum = FALSE)</p>



Final Sediment Transport Model

Calibrated Flow to Sediment Transport Curve

New Spawning Habitat Decay Pattern

*offset to account for non-zero end

Translating to Other Watersheds

- Goal: Apply flow-driven decay approach consistently across DSM watersheds
- Translation method:
 - Calculate flow at incipient motion for Sacramento River 5.7% exceedance probability (18,000 cfs at Keswick)
 - Determine equivalent 5.7% exceedance flow for each watershed
 - Shift sediment transport rate curve accordingly

Watershed	Estimated Flow at Incipient Motion (5.7% exceedance) (cfs)	Minimum Average Annual Decay (acres)	Average Average Annual Decay (acres)	Maximum Average Annual Decay (acres)
Clear Creek	297	0.00	0.00	0.01
Stony Creek	2019	0.03	0.16	0.37
Feather River	10445	0.47	1.97	4.48
Yuba River	6783	0.13	0.58	1.34
American River	9680	0.26	1.11	2.53
Calaveras River	844	0.02	0.08	0.19
Mokelumne River	1999	0.02	0.10	0.23

Implementation in DSM

- Pre-computed decay
 - Stored as Matrix and looked up at runtime for fast model runs
- Expandable, easily updated
- Parameterized for sensitivity analysis needs

Long-term Spawning Sediment Augmentation