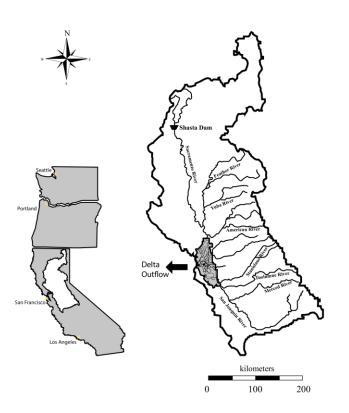
Estimating Monthly Delta Outflow During the First Six Decades Following the Gold Rush

WYs 1851 – 1911 Reconstruction Based on Legacy Hydrologic Data

CWEMF Annual Meeting Session 22 Folsom, CA September 25, 2024

Paul Hutton, Ph.D., P.E. Sujoy Roy, Ph.D. Tetra Tech, Inc.

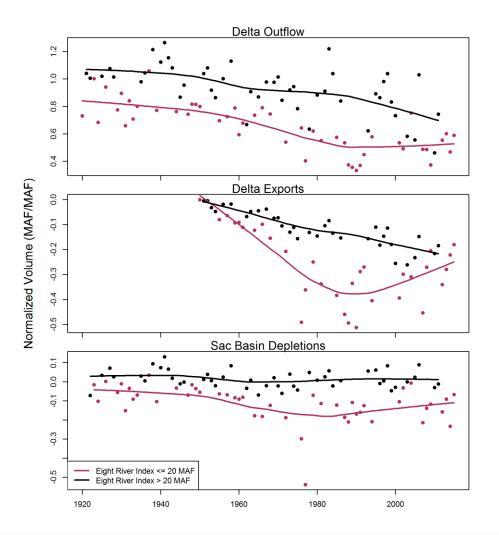
Funding Provided by State Water Contractors


complex world

Study Objectives

 Extend available Delta outflow time series back to California Gold Rush era (circa 1850)

TETRA TECH


- Evaluate trends associated with "normalized" Delta outflow – normalized to unimpaired runoff
- Evaluate validity of hypothesis that a systemwide decrease in evapotranspiration occurred in the latter half of the 19th century, a trend that was driven by:
 - the removal of high water using natural vegetation and
 - reduction in overbank flows due to levee construction

From Hutton et al. (2017)

Freshwater Flow to the San Francisco Bay-Delta Estuary over Nine Decades (Part 1) : Trend Evaluation Hydrological Processes

TETRA TECH

CLEAR SOLUTIONS

Systemwide Decrease in ET During Latter Half of 19th Century Suggested by Gross et al. (2018)

SAN FRANCISCO ESTUARY & WATERSHED

RESEARCH

TETRA TECH

A Comparison of Outflow and Salt Intrusion in the Pre-Development and Contemporary San Francisco Estuary

Edward S. Gross, *1 Paul H. Hutton,² Andrew J. Draper³

Volume 16, Issue 3 | Article 6

 Corresponding author: cd@rmanct.cl
Resource Management Associates Walnut Creek. CA 94596 USA

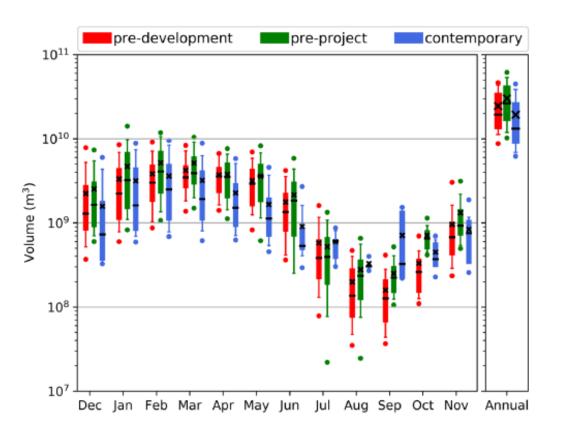
Center for Watershed Sciences University of California, Davis

- Davis, CA 95616 USA 2 Tetra Tech
- Lafayette, CA 94549 USA 3 Stantec
- Sacramento, CA 95816 USA

ABSTRACT

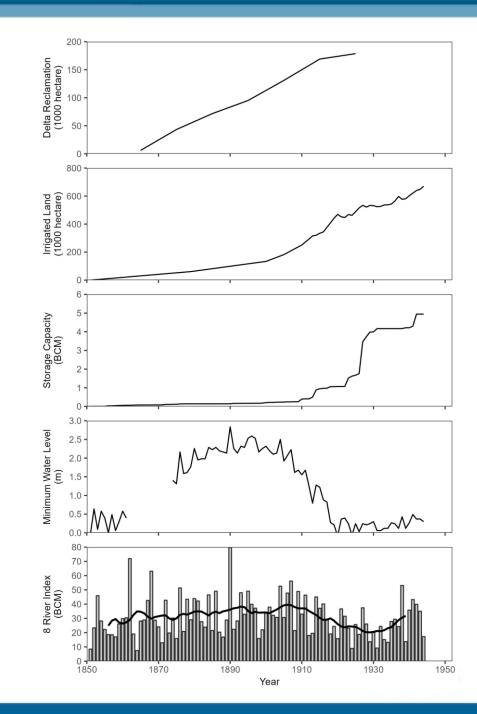
The San Francisco Estuary and its upstream watershed have been highly altered by human development following the California Gold Rush in the mid-19th century. In this paper, we explore the inter- and intra-annual variability of freshwater flow to this estuary and the resulting salt intrusion under scenarios that represent pre-development and contemporary conditions. To place this comparison in context with the advent of systematic and accurate flow and salinity measurements in the estuary, we consider an additional "pre-project" scenario that represents early 20th-century water management (circa 1920), after major flood control and reclamation but before the introduction of large water storage, diversion, and export operations. We use an observed climate record that spans 82 years to compare freshwater flow associated with the scenarios' landscape and water use characteristics.

Using published relationships between flow and salt intrusion length developed from three-dimensional hydrodynamic modeling, we evaluate the effect of these flow alterations as well as estuarine geometry modifications and historically observed sea level rise on salt intrusion. We conclude that the predevelopment estuary exhibited a more seasonally variable salinity regime, resulting from a more variable inflow regime from the upstream watershed.

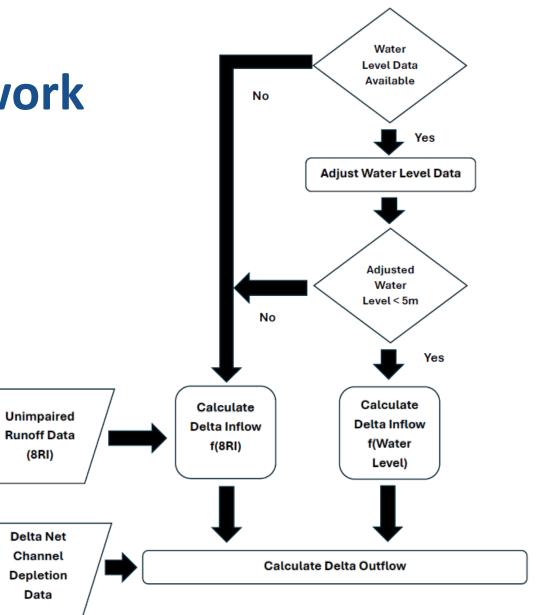

OCTOBER 2018

KEY WORDS

Sacramento-San Joaquin Delta, hydrology, natural flow, hydrodynamic modeling, salt intrusion, X2, predevelopment Delta, ecology


INTRODUCTION

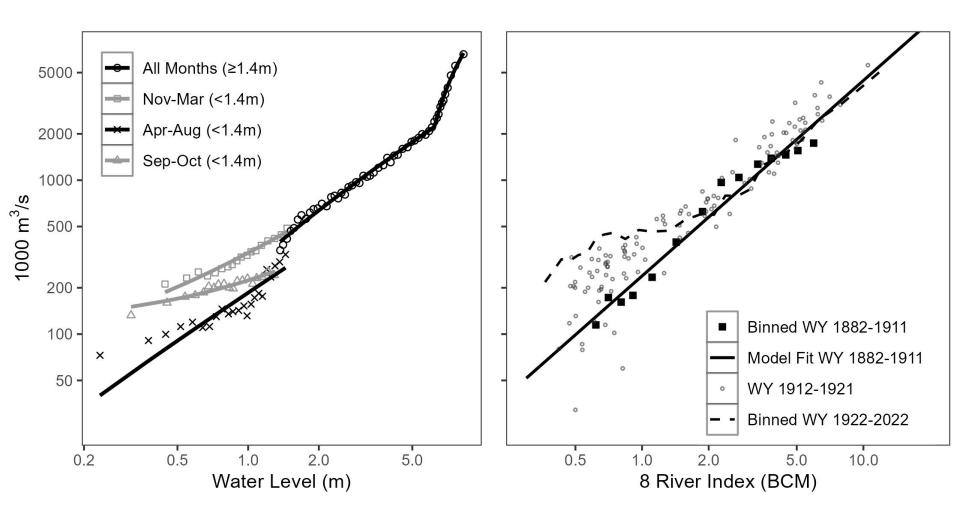
Estuaries throughout the world are exposed to a variety of stressors, including hydrologic alteration, invasive species, pollutants, eutrophication, and habitat loss (Kennish 2002). International restoration efforts are responding to these stressors, with the recognition that ecosystem effects are a consequence of multiple interacting factors that are often poorly understood (Kennish 1999; Williams and Or 2002; Thom et al. 2005; Elliot et al. 2007). Defining a restoration target or baseline is implicit in identifying ecosystem effects, and is important in structuring flow regulations and other restoration actions.



TE TETRA TECH

Timeline of Alterations WYs 1851 - 1944

Model Framework Schematic

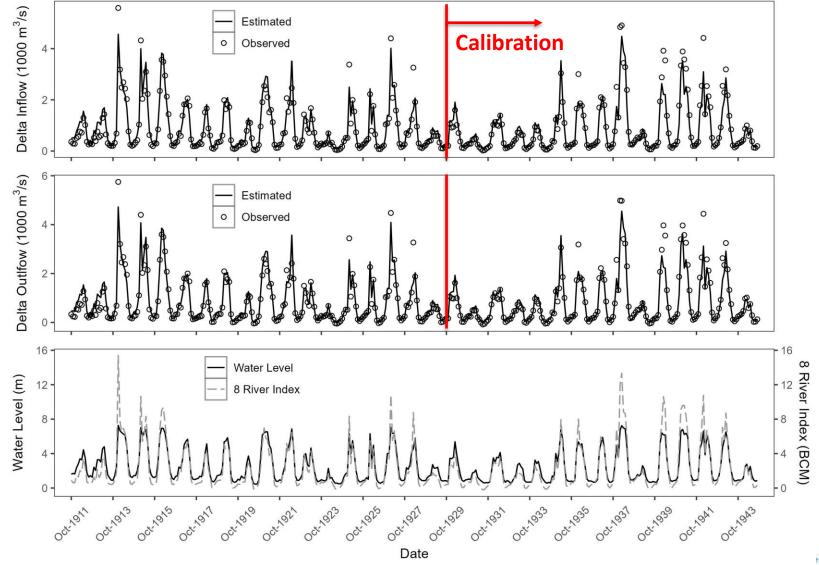


 Implicitly assumes stationary in-Delta water use over study period

RA TECH

- Stage discharge estimates are insensitive under low flow conditions
- Tidal discharge estimates were deemed unreliable
 - do not show credible seasonal variability over key periods when Sacramento water level data are unavailable
 - Poor predictive ability under low flow conditions

Delta Inflow Models

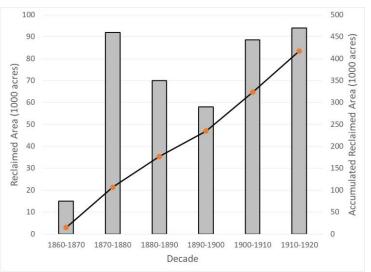


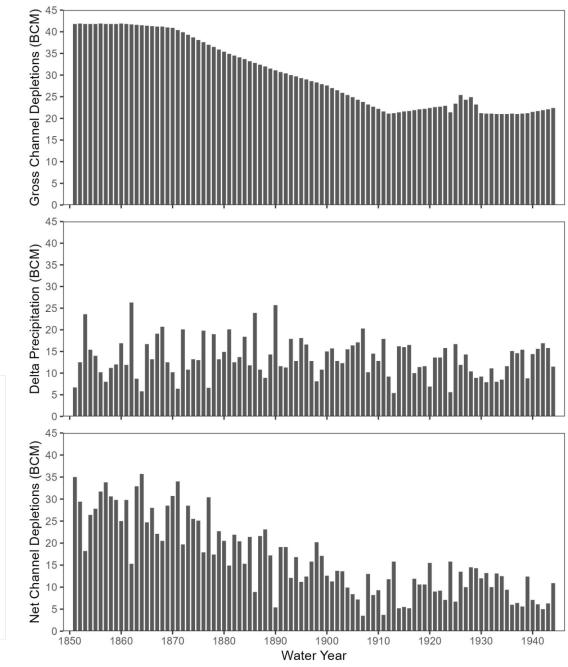
complex world

TETRA TECH

Calibration – Validation – Input Time Series WYs 1912 - 1944

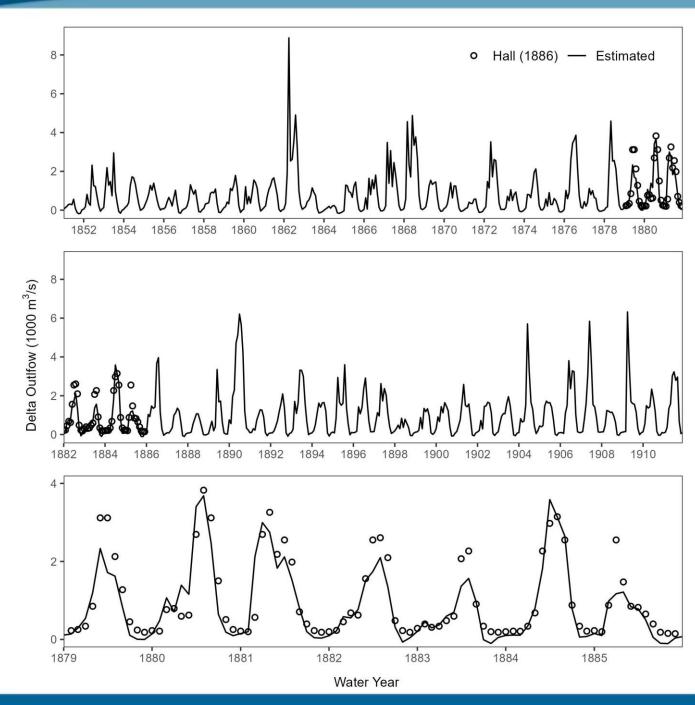
TETRA TECH



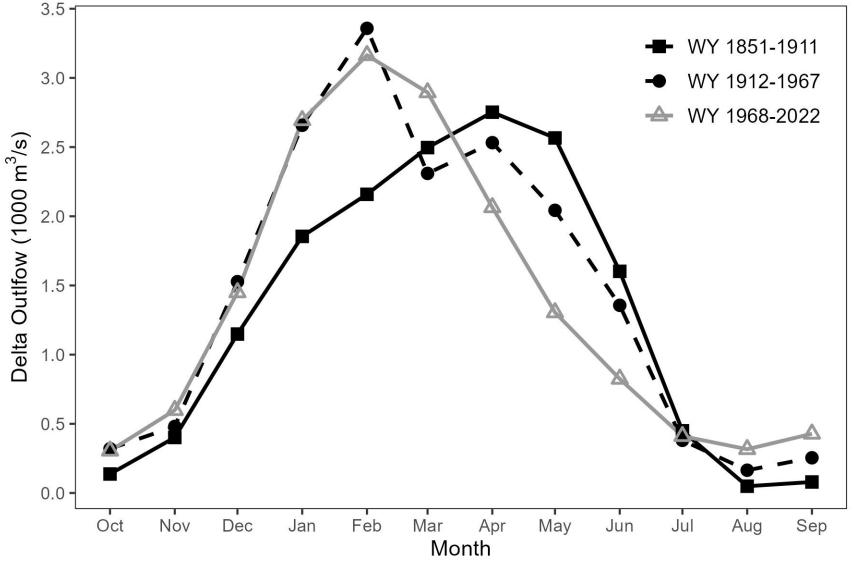

IONS"

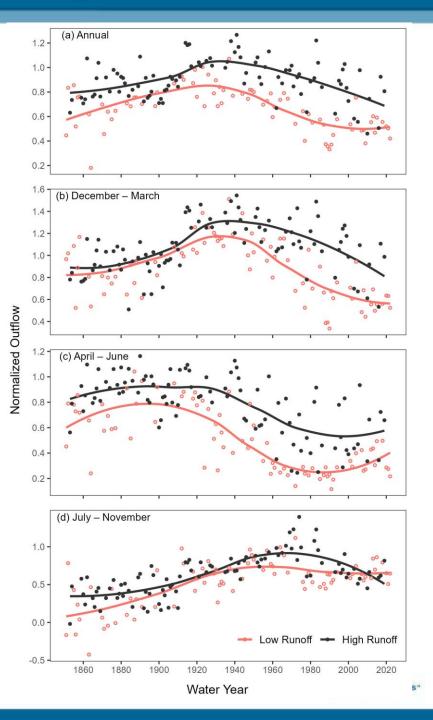
Delta Water Use Time Series WYs 1851 - 1944

TETRA TECH


TŁ

TE TETRA TECH


Delta Outflow Reconstruction WYs 1851 - 1911


Change in Outflow Distribution Wet Years

TETRA TECH

TŁ

Normalized Outflow Trends WYs 1851 - 2022

Summary & Conclusions

CLEAR SOLUTIONS

• Extended available Delta outflow time series back to California Gold Rush era (circa 1850)

RA TECH

- Evaluated trends associated with "normalized" Delta outflow – normalized to unimpaired runoff
- A systemwide decrease in evapotranspiration likely occurred in the latter half of the 19th century, a trend that was driven by:
 - the removal of high water using natural vegetation and
 - reduction in overbank flows due to levee construction
- Contemporary annual water use similar to predevelopment conditions; shift in seasonal timing

EXTRA SLIDES

complex world

TETRA TECH

Sacramento Water Level Data

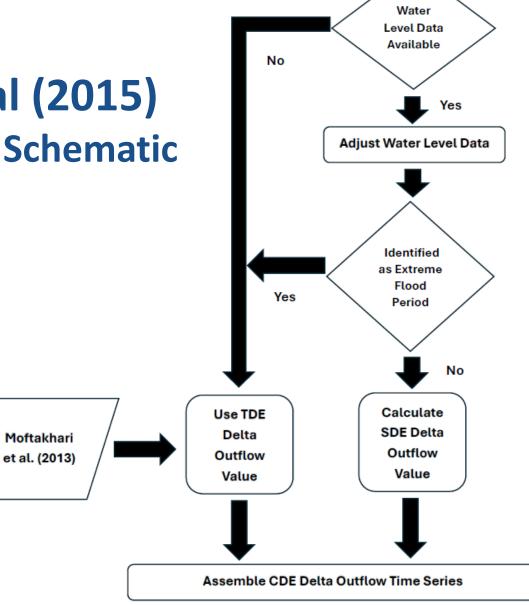
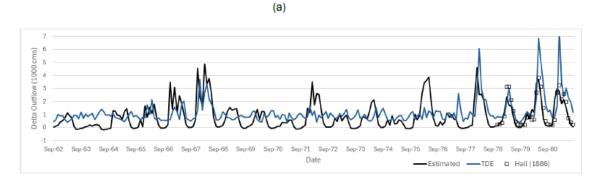
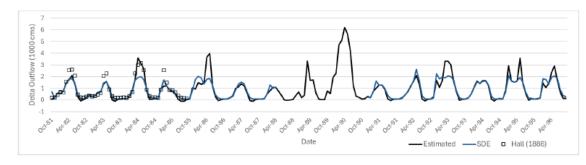
Period	#	Comments		
	Months			
Oct 1850 -	3	Data not used - Data appear to be duplicates of Oct-Dec		
Dec 1850		1849		
Jan 1851 -	140	Several missing values were filled through linear		
Aug 1862		interpolation; data prior to 1857 appear to be smoothed;		
Sep 1862 -	228	No data		
Aug 1881				
Sep 1881 -	8 0	Complete data set		
Apr 1888				
May 1888 -	31	No data		
Nov 1890				
Dec 1890 -	646	Complete data set		
Sep 1944				

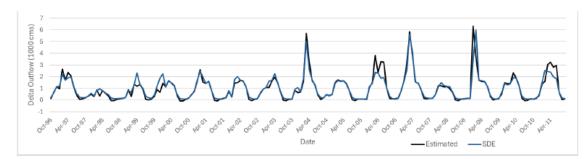
Other Data

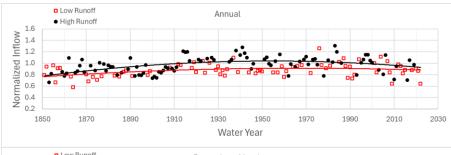
Inflow	Period	#	Source
		Months	
Delta Inflow	Oct 1911 - Sep 1944	396	Hutton & Roy (2019)
			Hutton et al. (2015)
			DAYFLOW (1986)
Delta Outflow	Oct 1911 - Sep 2022	396	Hutton & Roy (2019)
			Hutton et al. (2015)
			DAYFLOW (1986)
Gross Delta	Oct 1911 – Sep 1944	96	Hutton & Roy (2019)
Channel Depletions			Hutton et al. (2015)
			DAYFLOW (1986)
Precipitation at	Jan 1853 – Jan 1857	719	Hall (1886)
Stockton, CA	Sep 1867 – Aug 1884		CDEC
	Dec 1904 - Sep 1944		
Precipitation at	Oct 1850 – Sep 1944	1128	Masters – Bevan
Sacramento, CA			(2000)
Net Delta Channel	Oct 1911 - Sep 1944	96	Hutton & Roy (2019)
Depletions			Hutton et al. (2015)
			DAYFLOW (1986)
Sacramento River at	Nov 1878 – Sep 1885	83	Hall (1886)
Collinsville, CA			McGlashan &
			Henshaw (1912)
SDE Reconstruction	Oct 1850 – Aug 1862	864	Moftakhari et al.
(Water Level Based	Sep 1881 – Apr 1888		(2015)
Outflow Estimate)	Dec 1890 - Sep 1944		
TDE Reconstruction	Jan 1859 – Sep 1944	1029	Moftakhari et al.
(Tide Based Outflow			(2013)
Estimate)			
Central Valley	Oct 1850 - Sep 2022	2 0 64	Lai et al. (in review)
Unimpaired Runoff			CDEC
(8 River Index)			

Moftakhari et al (2015) **Model Framework Schematic**

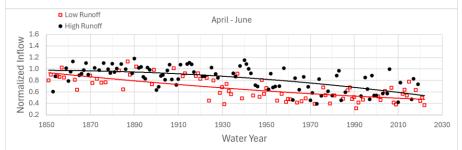
Yes


Figure S-2. Time Series Comparison of Estimated Outflow Reconstruction with Moftakhari et al. (2015) – indicated by "TDE" and "SDE". Panel (a) shows comparison for September 1862 – August 1881 when outflow estimates are not based on Sacramento water level data. Panels (b and (c) show comparisons for WYs 1882 – 1911 when outflow estimates are generally based on water level data. Flow measurements at Collinsville (Hall, 1886) overlay outflow estimates for comparison.



(c)




complex world

Normalized Inflow Trends WYs 1851 - 2022

complex world

- Hall, W.H., 1886. Physical Data & Statistics of California, Office of State Engineer, Sacr., CA. 547 p.
- California Department of Public Works (CDPW), 1931. Variation and Control of Salinity in the Sacramento–San Joaquin Delta and Upper San Francisco Bay, Bulletin 27.

TETRA TECH

- Moftakhari H.R., Jay, D.A., Talke, S.A., Kukulka, T., Bromirski, P.D., 2013. A novel approach to flow estimation in tidal rivers. *Water Resour Res, 49*(8): 4817–4832. <u>http://doi.org/10.1002/wrcr.20363</u>
- Moftakhari, H., Jay, D., Talke, S., Schoellhamer, D., 2015. Estimation of historic flows and sediment loads to San Francisco Bay, 1849–2011. *Journal of Hydrology*, *529*: 1247–1261. <u>https://doi.org/10.1016/j.jhydrol.2015.08.043</u>
- Howes, D.J., Fox, P., and Hutton, P.H., 2015. Evapotranspiration from Natural Vegetation in the Central Valley of California: Grass Reference-Based Vegetation Coefficients and the Dual Crop Coefficient Approach, Journal of Hydrologic Engineering, DOI: 10.1061 / (ASCE) HE.1943-5584.0001162
- Fox, P., Hutton, P.H., Howes, D.J., Draper, A.J., and Sears, L., 2015. Reconstructing the Natural Hydrology of the San Francisco Bay-Delta Watershed, Hydrology and Earth System Sciences, 19, 4257-4274.
- Gross, E.S., Hutton, P.H, and Draper, A.J., 2018. A Comparison of Outflow and Salt Intrusion in the Pre-development and Contemporary San Francisco Estuary, San Francisco Estuary & Watershed Science Journal, 16(3), DOI: <u>https://doi.org/10.15447/sfews.2018v16iss3art6</u>
- Hutton, P.H. and Roy, S.B., 2019. Characterizing Early 20th Century Delta Outflow and Salinity Intrusion in the San Francisco Estuary, San Francisco Estuary & Watershed Science Journal, 17(2), DOI: <u>https://doi.org/10.15447/sfews.2019v17iss2art3</u>
- Lai, Y., Hutton, P. and Roy, S., 2024. Reconstructing Seasonal Runoff to the San Francisco Estuary: Extending the Available Record Back to Water Year 1872, tentatively accepted for publication, JAWRA.