

An Optimization Approach for Shasta Temperature Management

Drew Allan Loney, PhD PE Mechele Pacheco

DRAFT – SUBJECT TO REVISION

Overview

- Previous Work
 - Shasta Temperature Tiers
 - Impacts of Tiers
 - Tier Formulation
 - Initial Results

• Analysis Updates

Next steps

Shasta Temperature Tiers

- Downstream compliance temperatures defined by cold water pool volume (CWP)
- Adapt temperature management to utilize cold water when it's most impactful
- Tiers resulted from the 2019 BiOp process to protect fisheries
- CWP defines tier (<52 F)
 - > 3800 TAF: Tier 1 > 2500 TAF: Tier 3
 - > 2800 TAF: Tier 2
 Otherwise Tier 4

Tier 1 ■ Tier 2a ■ Tier 2b ■ Tier 2c ■ Tier 3a ■ Tier 3b ■ Tier 3c ■ Tier 4

Tier Impacts

- Define when to use cold water pool for fisheries benefit
- Defines tradeoff between holding and using water
 - Accepts warming of water in the reservoir in exchange for later use
 - Accepts hydrodynamic constraints on reservoir releases

What do we want from our tiers?

- Maximize the fisheries benefit of cold water releases
- Use cold water before it becomes warm water
- Use cold water before while it's possible to release it
- Possible to optimize tiers against a quantitative objective
 - Use TDM despite not describing full life cycle
 - Life cycle models too computationally intensive
- Keep operations logic fixed across analysis

Tier Formulation

- Tiers defined by:
 - Minimum Temperature
 - Maximum Temperature
 - Four ramp offsets
- Offsets defined to August 1st
- Cold water pool (<52F) volume defines transition between tiers

Expected Value

- Carryover analysis population is taken to be statistically representative of fills
- Fill bins are drawn from until convergence (<0.1% change) or until all years computed in bin

Optimization

Results – 2019 BiOp Martin TDM

- Optimization can significantly improve performance in the middle fill range
- Lose performance in lower fills, upper fills
 - Tier 1 & 2 tiers collapse
 - Less resolution through Tier 3

Results – Constant Tiers Martin TDM

- Optimization improves, but struggles with the tier collapse
- Lower tiers generally improve
- Timing affects not strong enough to overcome temperatures
 - Implies either a larger sample or more strategic initial condition

2021 LTO Analysis

- Able to create new tier structure to more effectively use the cold-water pool
- New tiers structure
 - Greater than 3 MAF: 53.5 F
 - Between 3 MAF and 1.5 MAF: 54 F
 - Less than 1.5 MAF: 56 F
 - 60F shoulder shifting between May and June
 - All fixed at Clear Creek compliance location

Analysis Updates

- Revisit to reconfirm analysis outcomes under climate change and new operations
 - Done in collaboration with the BDO Science Division
 - Update for 2022 +/- 15 median climate condition
 - Update with full CS3 period of record
- Carryover sample not available for an expanded sample population
 - Need to make some other assumption about statistical population
 - Treat the CS3 period as a statistically representative sample

Next Steps

- Finish the 2021 LTO
- Reformulate code for new assumptions
 - CalSim 3 period of record
 - New operations scenarios
 - More straightforward sample convergence
 - Include Anderson model as potential metric
- Run the analysis
 - Get coffee, lots of it
- Compare back to the 2021 tiers

Drew Allan Loney, PhD PE dloney@usbr.gov

Mechele Pacheco mpacheco@usbr.gov

— BUREAU OF — RECLAMATION