

Trinity Temperature Operations

Drew Allan Loney, PhD PE Mussie T. Beyene, PhD September 25th, 2024

Overview

- Project features
- Temperature Processes
- Modeling Workflow
 - HEC5Q
 - RBM10
- Scenario Logic
- Climate Analysis

Trinity River Features

Figure 1. Map showing eight locations (circles) where observed water temperature data were measured and used to calibrate RBM10 at the downstream end of each meteorological reach of the Trinity River drainage basin, northern California.

• Reservoirs

- Trinity
- Lewiston
- Diversion
 - Clear Creek Tunnel to Whiskeytown Reservoir
- Downstream tributaries
- Temperature management important for salmonid habitat

DRAFT - Subject to Revision

Temperature Processes

Reservoir Processes

	with a change in water phase	temperature, relative humidity, wind		
H _c	Sensible heat flux in response to con- duction between the water body and the atmosphere	air temperature, water temperature	when water tempera- ture is lower than air temperature	when water temperature is higher than air tem- perature
H _b	Long-wave radiation from the water body	water temperature	not applicable	always
H _a	Long-wave radiation from the atmosphere	air temperature	always	not applicable
H _s	Short-wave radiation from the sun	solar radiation	always	not applicable
H _{bed}	Ground or bed heat conduction between the water body and the bed	water temperature, bed temperature	when water temperature is lower than bed temperature	when water temperature is higher than bed temperature

Riverine Processes

HEC5Q

- Standard, accepted modeling toolkit used to model temperatures
- Period of record extended to match the CalSim 3 extension
 - Truncated by the RBM10 data availability
- Operations are fixed inputs from the CalSim 3 model
- Temperature compliance targets are set by alternative logic

RBM10

- A one-dimensional water temperature model to simulate daily mean water temperature along the Trinity and lower Klamath Rivers.
- Model inputs: river geometry, boundary conditions, and meteorology.
- Sixteen meteorological reaches (Daymet) and 18 tributaries.
- Study period: 1980 2021
- Built by the USGS

EPA, 2018.

Modeling Workflow

Workflow Validation

- Models not intend to run in coupled format
- Need to build unified workflow that moves data between models
- Must validate portions of the workflow

RBM10 Release Disaggregation

- Recorded daily release rates were averaged by month and disaggregated using SPLINE function
- 5 centre points were considered (1st, 7th, 14th, 21st, and 28th)

Disaggregated Lewiston Release Rates

Disaggregated daily release rates with center point at the 7th and 14th often matched recorded daily release rates.

Temperature Comparison at Douglas City

 Discrepancies between observed and modeled water temperatures were the least when the daily release flow rate was disaggregated using a SPLINE method centered on the 14th day.

Scenario Logic

- Nine CalSim operations
 logic
 - Different period of record
- Four temperature target logics
- Similar locations with different mixes of timing and temperatures

Scenario	Douglas City	NF Trinity River
1	July 15 – Sept 15 60F Sept 16 – Sept 30 56F Jan 1 – July 14 99F	Oct 1 – Dec 31 56F
2	July 15 – Sept 15 60F Sept 16 – Sept 30 56F Jan 1 – Mar 31 99F	Oct 1 – Dec 31 56F Apr 1 – July 14 58.5 7DADA
3	July 1 – Sept 14 60F Sept 15 – Sept 30 56F Jan 1 – June 30 99F	Oct 1 – Dec 31 56F
4	Sept 15 – Sept 30 56F Jan 1 – Sept 14 99F	Oct 1 – Dec 31 56F

Climate Analysis

WITHOUT PROMPT, AGGRESSIVE LIMITS ON CO2 EMISSIONS, THE EARTH WILL LIKELY WARM BY AN AVERAGE OF 4°-5°C BY THE CENTURY'S END.

- Climate adjusted inputs are needed for temperature
 CalSim does use NF Trinity inflow
- Tributary inflows/temperatures affect in river temperatures
- Climate is highly uncertain
- Input development is next step after workflow validation

Drew Allan Loney, PhD PE dlove Ousbr.gov Derya Sumer, PhD PE Dsumer@usbr.gov Mussie T. Beyene, PhD

— BUREAU OF — RECLAMATION