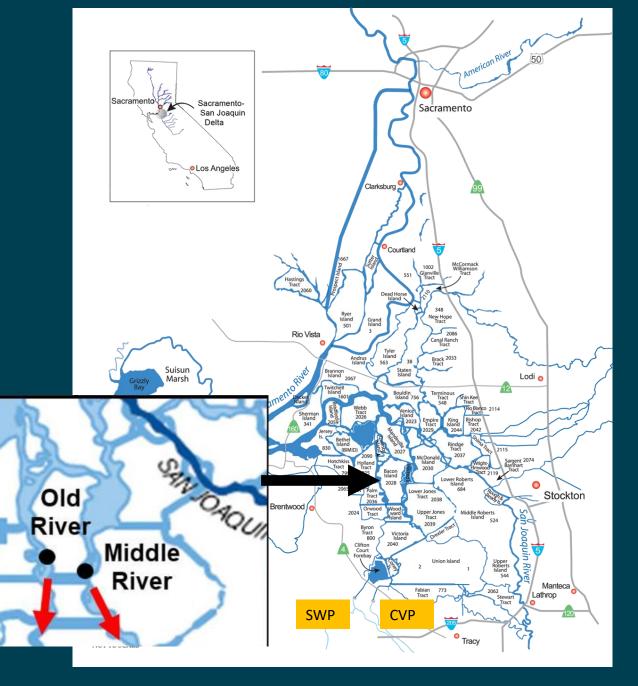


Sensitivity Analysis of Old and Middle River Flows on Particle Fates

Modeling Division, Bay Delta Office, Reclamation

September 23, 2024

Jianchun "Victor" Huang, PE, PhD

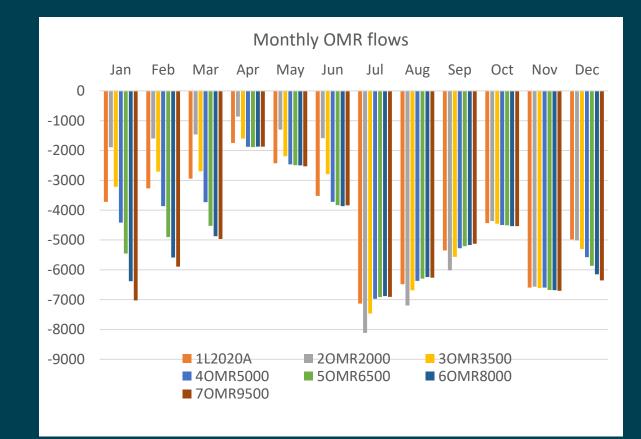

Sedimentation and River Hydraulics Group, Technical Service Center, Reclamation

Samaneh Saadat, PhD

Jacobs

Introduction

- Water flow in the Delta is directly influenced by the Jones and Banks Pumping Plants
- Water from the Delta is exported southward through the Jones and Banks Pumping Plants (SWP and CVP).
- Pumping is managed to minimize the impact on protected fish species during the fish migration season (Dec to Jun)
- Combined flow in the Old and Middle Rivers (OMR flow) is a measure of water export influence.


Introduction – OMR Limits

- L2020A: dynamic OMR flow limit that varies by month, water year type, and specific flow triggers
- OMR2000: limit of -2,000 cfs , most positive flow
- OMR3500: limit of -3,500 cfs
- OMR5000: limit of -5,000 cfs
- OMR6500: limit of -6,500 cfs, most negative flow
- OMR8000: limit of -8,000 cfs, used to assess the point at which the OMR flow limit becomes ineffective
- OMR9500: limit of -9,500 cfs

• Biological Assessment (BA) Alternative 2v1 (Alt 2v1) without a Temporary Urgency Change Petition (TUCP)

Introduction – OMR Limits

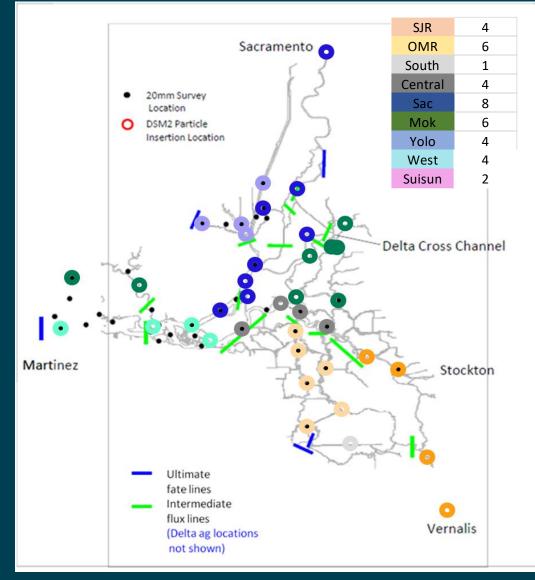
Approach

- Conduct Calsim III simulations under OMR limits on Delta operations (100 years of planning simulation)
- Run DSM2 HYDRO, PTM, and ECO-PTM models
- Evaluate fate based on month, Sacramento River and San Joaquin River flow bin, and particle insertion location

Sacramento River Flow Bin								
Bin	Min Flow (cfs)	Max Flow (cfs)						
lo	0	13416						
med	13416	24726						
hi	24726	N/A						

San Joaquin River Flow Bin

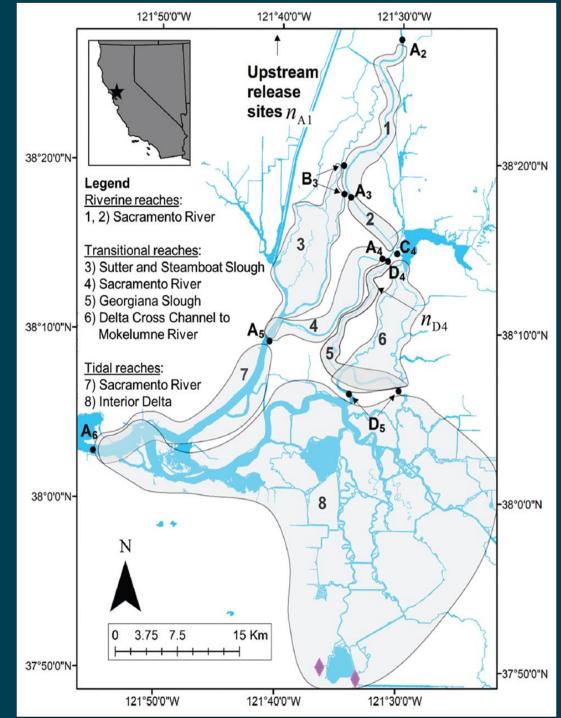
	(cfs)	Max Flow (cfs	Min Flow (cfs)	Bin
med 1984 4097		1984	0	lo
		4097	1984	med
hi 4097 N/A		N/A	4097	hi


Approach

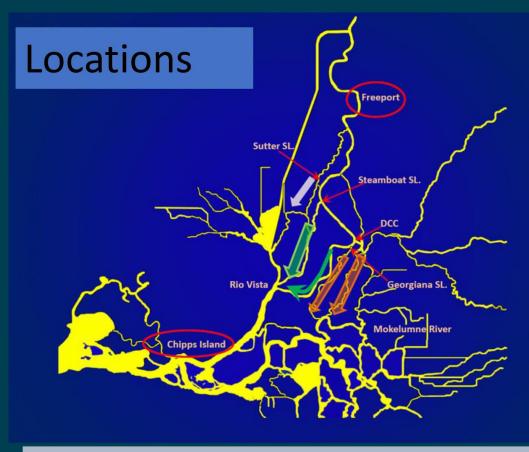
- PTM
 - Naturally-buoyant Particles (NP): flowing in the whole water column (larval Delta Smelt)
 - Position-oriented Particles (PP) : flowing near the water surface (larval Longfin Smelt)
- ECO-PTM
 - Salmon Particles (SP) : fish like behavior

PTM Particle Insertion Locations

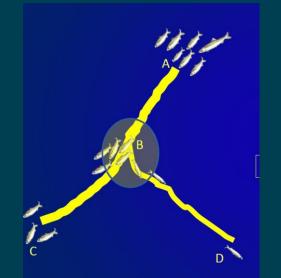
- 39 insertion locations
- 9 regions color-coded
- December through June period
- Insertion started on the 1st of the month
- 4000 particles evenly injected over a 24.75-hour period
- Fate of particles at the end of 45 days after insertion is computed


PTM Particle Fates Examined at

- West of Chipps: Particles that pass Chipps Island
- South Delta Entrainment: Particle entrained into SWP and CVP pumping plants.
- Remaining in Delta: Particles that remain within the system after 45 days.
- Crossed SJR to S Delta: Particles cross San Joaquin River into the south Delta


ECO-PTM Reaches

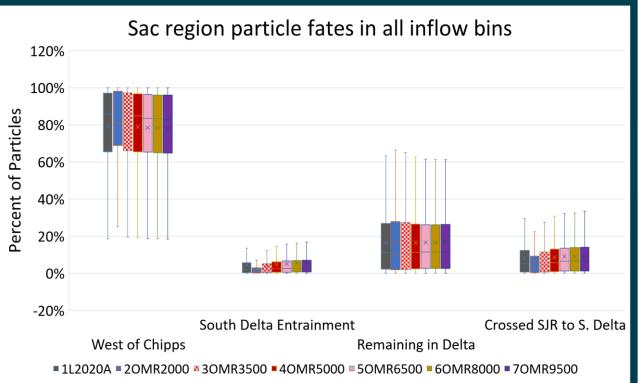
- 396 Simulations: Beginning of each month from December to March in the period from Dec 1922 to Mar 2021
- Insertion location: Sacramento River near Freeport
- 9600 Particles: 100 particles are released every 15 mins in 24 hours

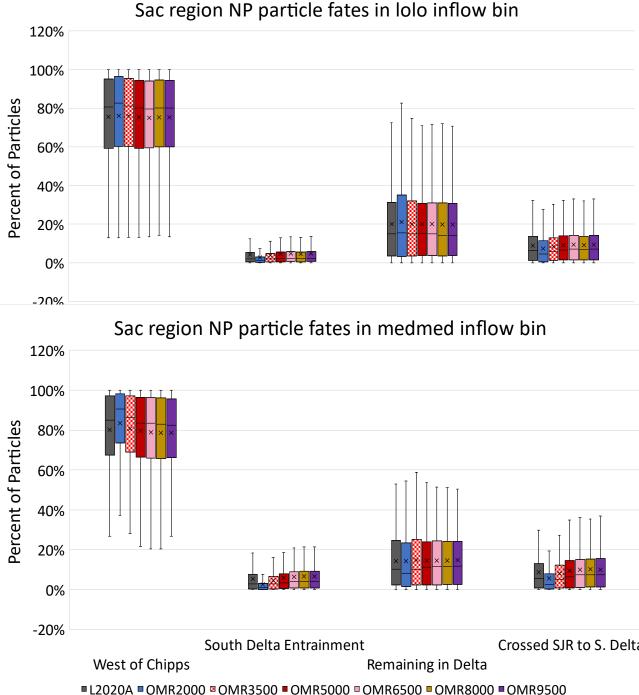


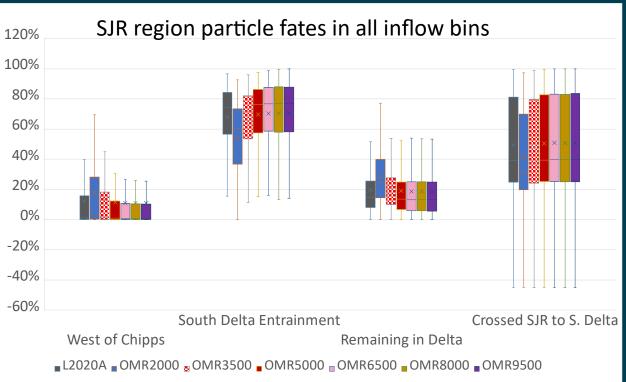
ECO-PTM Reaches

- Survival Rate
- Routing Ratio
- Travel Time

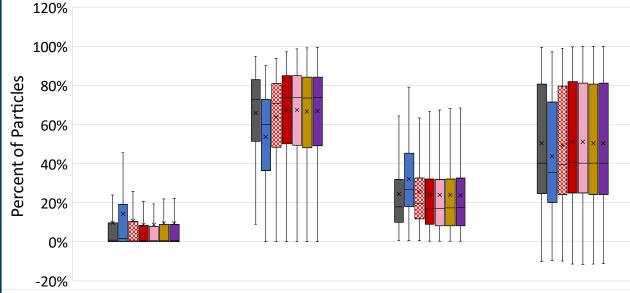
Source: ECO-PTM Application:Assess Effectiveness of Fish Barriers (Wang 2020)

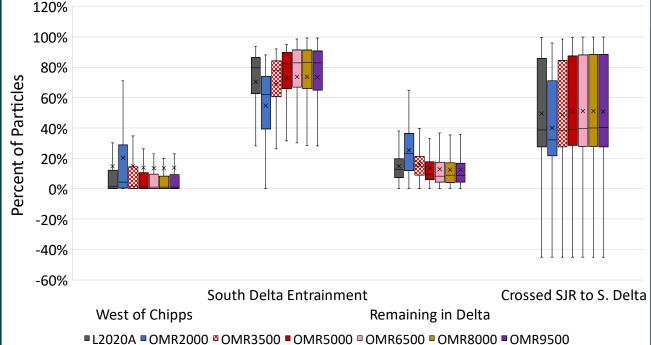



Limitation: not calibrated in the south delta

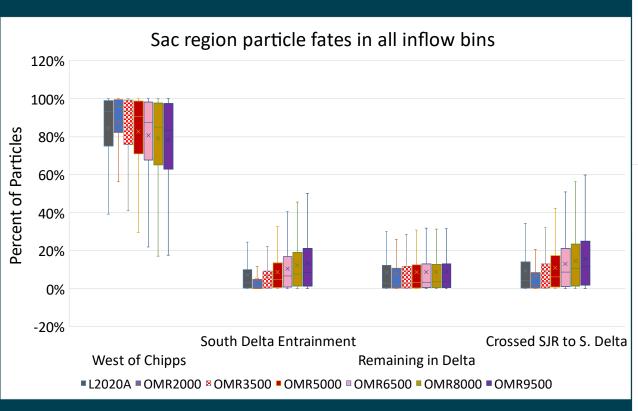

Results:

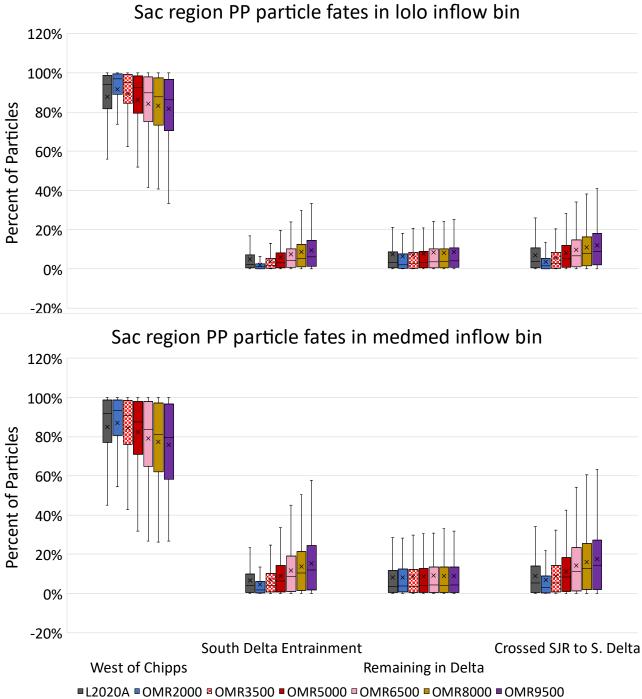
Example NP Results: Sac Region Particles Fates



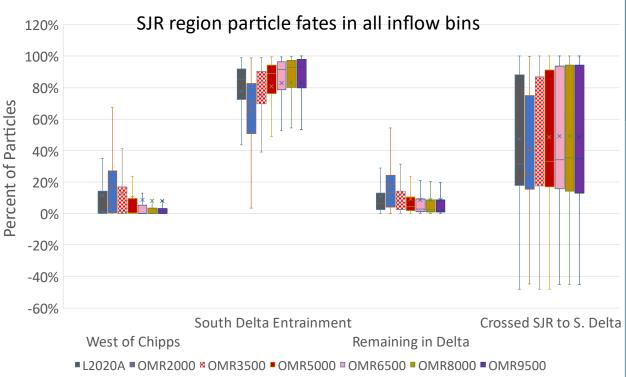

Example NP Results: SJR Region Particles Fates

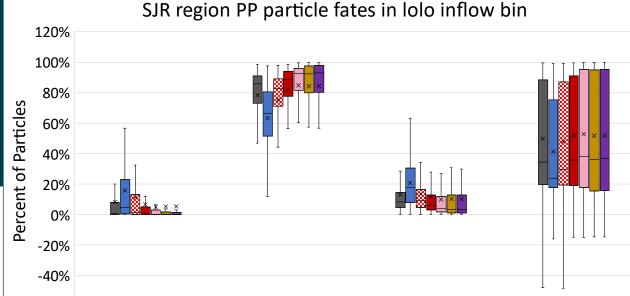
SJR region NP particle fates in lolo inflow bin

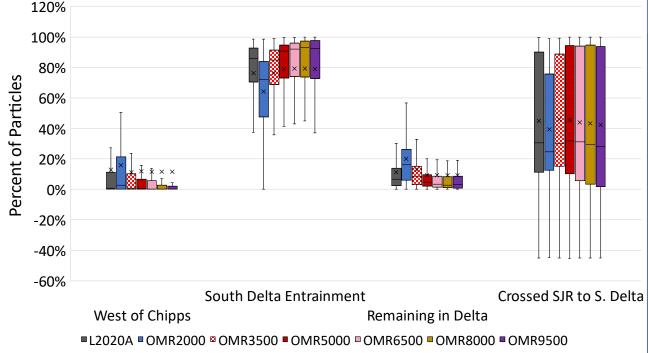

SJR region NP particle fates in medmed inflow bin



Example NP Results: SJR Region Particles Fates

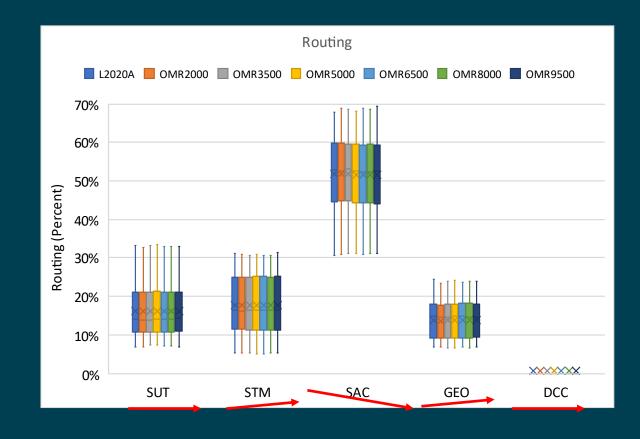

		Sacrar	nento River F	Region			
Particle fates	L2020A	OMR2000	OMR3500	OMR5000	OMR6500	OMR8000	OMR9500
West of Chipps	79.2%	81.0%	79.7%	78.8%	78.4%	78.2%	78.1%
Entrained at Exports	4.3%	2.3%	3.8%	4.7%	5.1%	5.3%	5.4%
Remaining in Delta	16.5%	16.7%	16.5%	16.5%	16.5%	16.5%	16.6%
Crossed SJR to S. Delta	8.1%	6.0%	7.5%	8.5%	8.9%	9.1%	9.2%
		San Jo	aquin River F	Region			
Particle fates	L2020A	OMR2000	OMR3500	OMR5000	OMR6500	OMR8000	OMR9500
West of Chipps	12.2%	17.7%	13.3%	11.3%	10.9%	10.9%	11.0%
Entrained at Exports	68.0%	53.9%	65.6%	69.6%	70.3%	70.4%	70.5%
Remaining in Delta	19.8%	28.3%	21.1%	19.0%	18.8%	18.7%	18.5%
Crossed SJR to S. Delta	49.4%	41.2%	48.0%	50.4%	50.8%	50.7%	50.7%


Example PP Results


Example PP Results

SJR region PP particle fates in medmed inflow bin

-60%


Example PP Results

Sacramento River Region									
	L2020	OMR200	OMR350	OMR500	OMR650	OMR800	OMR950		
Particle fates	А	0	0	0	0	0	0		
West of Chipps	84.5%	87.4%	84.9%	82.7%	80.7%	79.1%	78.0%		
Entrained at Exports	7.2%	4.6%	6.7%	8.7%	10.6%	12.1%	13.2%		
Remaining in Delta	8.3%	7.9%	8.4%	8.6%	8.8%	8.7%	8.8%		
Crossed SJR to S. Delta	9.4%	6.7%	8.9%	11.0%	12.9%	14.4%	15.5%		
		San Joa	quin River	Region					
	L2020	OMR200	OMR350	OMR500	OMR650	OMR800	OMR950		
Particle fates	А	0	0	0	0	0	0		
West of Chipps	11.6%	17.3%	12.7%	10.0%	8.6%	8.1%	8.1%		
Entrained at Exports	77.7%	65.0%	75.7%	80.8%	82.8%	83.3%	83.3%		
Remaining in Delta	10.7%	17.6%	11.6%	9.2%	8.5%	8.6%	8.6%		
Crossed SJR to S. Delta	47.2%	40.1%	46.0%	48.5%	49.3%	49.1%	48.5%		

SP Results-Routine **ECO-PTM** Locations Freeport Sutter SL Steamboat SL DCC **Rio Vista** orgiana S Mokelumne River Chipps Island

Source: ECO-PTM Application:Assess Effectiveness of Fish Barriers (Wang 2020)

Table 3.—Mean routing ratios under various OMR conditions

Routing ratio	L2020A	OMR2000	OMR3500	OMR5000	OMR6500	OMR8000	OMR9500
SUT	16.1%	16.1%	16.1%	16.1%	16.1%	16.1%	16.1%
STM	17.7%	17.6%	17.7%	17.7%	17.7%	17.7%	17.8%
SAC	51.8%	51.9%	51.8%	51.6%	51.6%	51.6%	51.5%
GEO	13.8%	13.7%	13.8%	13.8%	13.8%	13.9%	13.9%
DCC	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%	0.7%

SP Results-Survival Rate ECO-PTM

Source: ECO-PTM Application: Assess Effectiveness of Fish Barriers (Wang 2020)

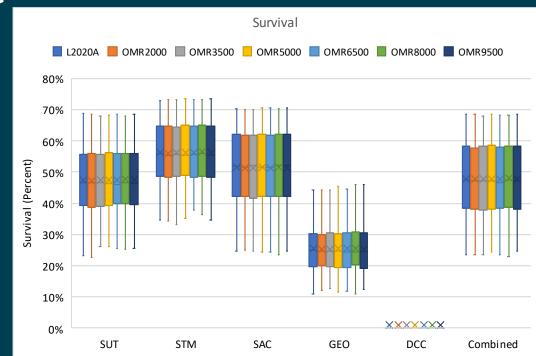
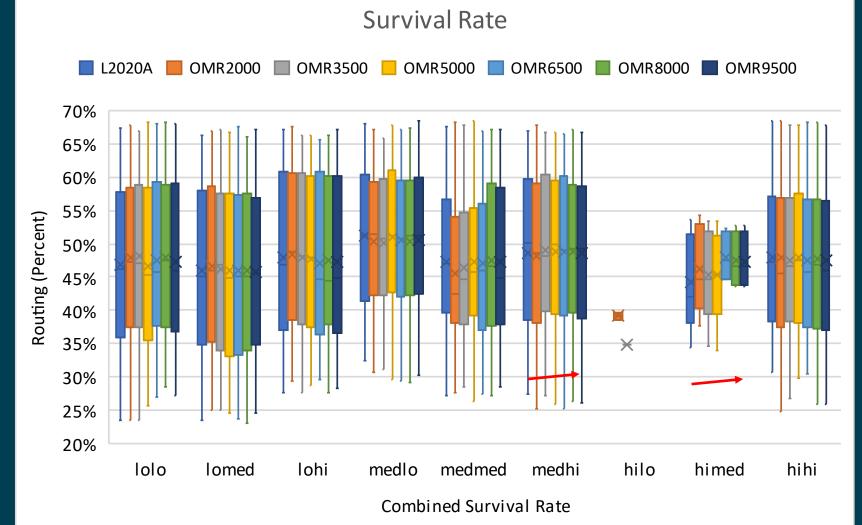
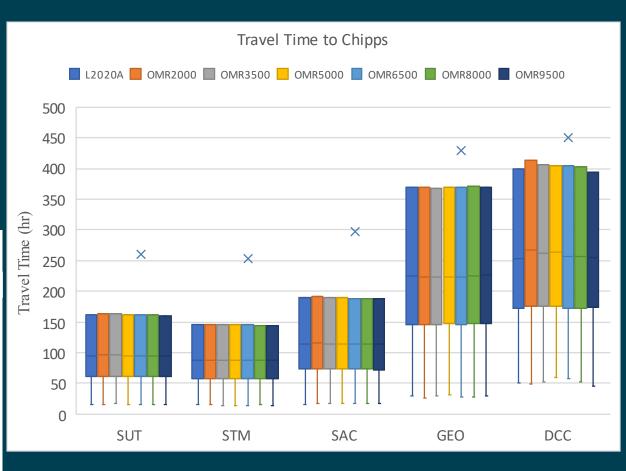



Table <u>4.—</u>Survival rates in each routine under various flow conditions

Survival rate	L2020A	OMR2000	OMR3500	OMR5000	OMR6500	OMR8000	OMR9500		
Survival Rates in All Month from Dec to March									
SUT	47.5%	47.2%	47.4%	47.5%	47.5%	47.7%	47.5%		
STM	56.3%	56.0%	56.3%	56.3%	56.3%	56.5%	56.2%		
SAC	51.4%	51.2%	51.3%	51.4%	51.4%	51.6%	51.3%		
GEO	25.4%	25.3%	25.3%	25.5%	25.4%	25.5%	25.3%		
DCC	0.9%	1.0%	0.9%	0.9%	0.9%	0.9%	0.9%		
TOTAL	47.9%	47.7%	47.8%	47.9%	47.8%	48.0%	47.8%		


SP Results-Survival Rate Different Flow Bins

SP Results-Travel Time

Table 5.—Median fish travel times from Sacramento River at Port to Chipps Island through each routine

	SUT	ѕтм ↓	SAC 🖡	GEO	DCC 🖡				
Medium									
L2020A	95.5	88.1	114.7	225.0	253.8				
OMR2000	95.9	88.4	115.4	223.3	267.3				
OMR3500	95.8	88.1	114.4	222.8	261.4				
OMR5000	95.4	87.7	114.2	224.1	264.0				
OMR6500	95.6	87.9	113.8	223.2	257.1				
OMR8000	94.8	87.6	113.8	224.2	257.0				
OMR9500	94.8	87.5	113.5	225.9	255.4				

Summary:

- OMR flow is a reliable indicator of water export
 - PTM and ECO-PTM models were used to predict the fate of various fish particles:
 - Naturally-buoyant Particles(NP) Larval Delta Smelt
 - Position-oriented Particles (PP) Larval Longfin Smelt
 - Salmon Particles (SP) Juvenile Salmon
- OMR flow impacts on NP and PP particles:
 - Reduces the number of particles passing Chipps Island
 - Increases the number of particles crossing the San Joaquin River (SJR) to South Delta and Entrainment at Exports.
 - Impacts SJR-inserted particles more significantly than SAC-inserted particles.
 - OMR limits can improve the performance of PP particles more significantly than NP particles.
- OMR flow impacts on SP particles:
 - Reduces salmon routing through the Sacramento River.
 - Overall salmon survival is not sensitive to OMR flows, but slightly more sensitive in certain flow bins.
 - Travel times are reduced in the Steamboat Slough (STM) and Sacramento River (SAC).

Acknowledgements:

- Model Division, Bay Delta Office
 - Derya Sumer
 - Kunxuan Wang
 - Cameron Koizumi
 - Joshua Israel
 - Jensen Alexander (NOAA Federal)
- Jacobs
 - Steve Micko (Metropolitan Water District of Southern California)
- California Department of Water Resource
 - Xiaochun Wang
 - Kevin He
 - Bradley Tom

