
Explicit Solver

RAS2025 includes a new compute engine with explicit time stepping.

Compared to the semi-implicit solver in RAS 6.x, the explicit solver is more
easily translated to GPU architectures and compatible with a broader range of
parallelization approaches. RAS2025 also migrates the solver implementation
to the same language as the user interface (C#), allowing the solver and UI to
run in the same process. These changes allow a tighter integration between
the interface and simulations than was possible in RAS 6.x.

For common RAS use cases the explicit solver's performance is similar to the
semi-implicit solver. Even though the explicit solver has more severe time-
step restrictions, each step of the explicit solver is relatively cheap to
compute. The solver also benefits from a combination of robust parallel
scaling and local time stepping. Local time stepping assigns cell- and face-
specific timesteps depending on the local courant number. Local time steps
divide the global timestep by powers of two, with three to four levels
typically most efficient.

Laplacian-based Quad Discretization

Vertex locations around quad patches are generally determined by the
solution contours of a pair of Laplace's equations. With suitable boundary
conditions, these contours meet at right angles throughout the patch and lead
to quads that are nearly orthogonal.

∇2ϕ = 0 ϕ(left bank) = 0, ϕ(right bank) = 1
∇2ψ = 0 ψ(upstream) = 0, ψ(downstream) = 1

Conceptual Mesh

Mesh generation in RAS2025 is based on a conceptual mesh — a blueprint for
the mesh generation process (similar to SMS). It is composed of arcs and
regions with attributes to control cell size, type, and quality.

Arcs delineate the boundary of the overall computational mesh and divide the
domain into regions. An arc can also denote a breakline if it falls entirely
within one region.

Regions are areas completely enclosed by arcs. Each region is meshed
independently, according to the attributes of the region (e.g. quadrilateral vs
triangular cells) and bounding arcs (e.g. cell size along boundary)

This "declarative" approach (compared to more "procedural" tools like Janet)
brings several major advantages and some challenges.

The computational mesh is fully described by the conceptual mesh (within
a specific version of RAS).

The conceptual mesh for this example is about 150kB, small enough to
make backups every few minutes, and to keep in git or other versioning
system.

Meshes are effectively parametric with respect to resolution choices,
making refinement studies and convergence studies more practical.

The declarative approach puts a greater burden on the mesh generation tools
to sort out potential geometric conflicts, as the computational mesh cannot be
directly edited. There is no longer a practice of fixing a mesh by manually
editing cell centers or vertices, although it is possible to create regions which
end up generating exactly one cell.

San Francisco Estuary Demonstration Mesh

The mesh shown on this poster is intended as a testbed for the mesh
generation features of RAS2025. Mesh types, resolutions, and parameters
have been chosen more for demonstration purposes than for optimal
simulation. Some features of the Delta and Suisun Bay have been omitted,
especially when they would not exercise any additional features of the mesh
generator.

Mesh details:

25,655 cells, 50,015 faces

Approximately 9 seconds to generate

212 regions: 127 quads, 84 triangle, 1 cartesian

Domain includes San Francisco Bay, with an ocean boundary near Point
Reyes.

Stretching

When not adjacent to a quad patch, spacing along arcs is adjusted to avoid
sharp changes in cell size. This is accomplished by computing a coarse
triangulation of the conceptual mesh and propagating size constraints and
stretching rates across the triangulation.

For example, a refined channel is often flanked by coarse overbank regions.
The overbanks can be configured with arbitrarily coarse cell sizes. These
values will be adjusted during the scale propagation phase to smoothly
coarsen moving away from the channel. Propagation applies both to the
spacing along arcs and within regions, with the option to coarsen or refine
within triangle and cartesian regions.

Post-processing

After initial generation, region meshes are optimized through a configurable
"recipe" of post-processing steps. The current implementation includes
multiple smoothing algorithms, cell splitting/merging, and edge swapping.
Upcoming releases will add algorithms for improving orthogonality and local
mesh topology.

After all region meshes have been generated (typically in parallel), the global
computational mesh is constructed by splicing the region meshes together.
Another round of mesh optimizations can be applied to the global mesh.
Conflicts between the computational mesh and sub-face geometry are also
repaired at this stage.

An important feature of these post-processing steps is that they maintain the
relationship between faces of the computational mesh and the arcs of the
conceptual mesh. These faces are constrained to slide along the conceputal
mesh arcs, ensuring that the optimization does not introduce "leaks" across
levee-like features.

RAS2025, the next major release of HEC-RAS, will include major changes to
mesh generation, a new explicit solver, and a new user interface. An alpha
version will be released at the end of September, 2024.

Mesh generation: The new mesh generation approach aims to improve
mesh quality, repeatability, and flexibility. While these goals and their
implementation are tailored to HEC-RAS and its predominant use-cases,
the mesh generation algorithms are applicable to most unstructured,
mixed-element hydrodynamic models.

Explicit solver: A new solver for 2D, unsteady problems has been
implemented in RAS2025, with the goal of supporting better
parallelization, GPU computations, and tighter integration with the user
interface.

This poster outlines the features and design choices of the mesh generator and
key features of the explicit solver.

The user interface provides several alternative views to aid the user
while developing a new mesh:

Arcs that are not part of a closed
cycle become breaklines

Quad multipoint adds curvilinear
faces within patches for better
subgrid representations in
tortuous channels.

Scale negotiation →
smoothly coarsens
triangles moving away
from the channel and a
refined triangular
region.

Approximate discretization allows
omission of some fine-scale arc
geometry.

Exact arc discretization introduces
additional cells when fine-scale
geometry of an arc would otherwise
cause conflicts.
←

Aggressive merging and
smoothing leads to a hybrid
tri/quad mesh.

