CalSim–CoSANA Integration for Sacramento Regional Water Bank (SRWB) Modeling

CWEMF 2024 September 24, 2024 Presenters: Stantec – Dr. Puneet Khatavkar Woodard & Curran – Jingnan Zhou

Agenda

- Water Bank Analysis Framework (Puneet)
- Modeling Overview & Demand and Supply Assumptions (Puneet/Jingnan)
- CalSim-CoSANA Updates (Puneet/Jingnan)
- Groundwater Impacts and Metrics for Analysis (Puneet/Jingnan)

Sacramento Regional Water Bank Project Team

- Regional Water Authority (RWA)
 - Trevor Joseph, P.G., C.Hg.
 - Raiyna Villaseñor
- Khadam Consulting
 - Ibrahim Khadam, Ph.D., P.E., PMP
- Stantec
 - Puneet Khatavkar, Ph.D., P.E., ENV SP
 - Andy Draper, Ph.D., P.E.
 - Tom Fitzhugh
 - Vanessa Nishikawa
 - Rafael Herrera
- Woodard & Curran
 - Ali Taghavi, Ph.D., P.E.
 - Reza Namvar, Ph.D., P.E.
 - Jingnan Zhou

Water Bank Analysis Framework

The Big Story - The Water Bank is an Expansion of Conjunctive Use Operations

Conjunctive Use

Water use is shifted to more surface water in wet conditions. Water use is shifted to more groundwater in dry conditions.

Water Banking

Expansion of conjunctive use relying on market-based tools to provide additional water reliability and environmental benefits.

Modeling Overview & Demand and Supply Assumptions

CalSim 3 and CoSANA Key Modeling Assumptions

ltem	CalSim 3 (Draft LTO 2024 Model)	CoSANA (GSPs Exiting Conditions with Extension to WY2023)
Simulation period	• 100-year (Oct 1921- Sep 2021)	• 54-year (WY 1970 – 2023)
Climate and Hydrology	 Historical adjusted hydrology, existing upstream flow regulations, and current sea levels reflecting sea level rise. 	• 54-year Hydrology (Same as WY 1970 – 2023)
Land use	• Average irrigated crop area for 10-year period 2004-2013.	2015 Sacramento County survey
Urban Demands	 2020 UWMPs Single monthly pattern for all year types based on production data from DWR's PWSS database or UWMP data when available 	• Existing Urban Demands per UWMP (2015)
Urban Water Supply Mix	 2020 UWMPsStakeholder inputs for American River Basin	• 2015 UWMP
Agricultural Demands	 Land use based. Developed using CalSimHydro (with built-in IWFM Demand Calculator) 	• Estimated by Model based on current crop mix and irrigation practices and historical hydrology
Agricultural Supply Mix	Agricultural Water Management Plans	Agricultural Water Management Plans

Alignment of CalSim 3 and CoSANA Modeling Assumptions

- The simulation period is set to 50-year period from Oct 1969 to September 2021 to reflect the period of overlap between the simulation periods for the two models.
- Urban demand units in the North and South American groundwater subbasins are mapped between both models and as appropriate, aggregated or disaggregated, to align demand and water supply representations.
- A consistent set of urban demands are used in both models, including using a single repeating monthly demand pattern for each demand unit.
- Contribution from each water supply source to meet urban demands for each demand unit is determined in CalSim 3 and then passed to CoSANA.
- Representation of agricultural demands in the Study Area are unaltered in both models.
 - The effects of agricultural demands on surface water and groundwater budgets are simulated by CoSANA and are reflected in the streamflow accretions.
 - Agricultural demands are calculated using similar methodology for both models, with some differences in land use and crop information assumptions.
 - $\circ~$ Because the focus of the Project is on M&I conjunctive use.

Agency-Specific Assumptions for Water Bank Operations

legional Water Authority

BUILDING ALLIANCES IN NORTHERN CALIFORNI

A Sustainable Storage & Recovery Program

WATER BA

SACRAMENTO REGIONAL

٥

<u>District</u>				District ID	<u>CalSim Der</u>	mand Units	į	Typical Wa	ater Use										
Sac_Su	iburban_	South	SSWDSOL	J	26N_NU4			SW-GW		Poten	tial Wa	ter Bank	Participation	Histroical Wa	ter Use (TAF)			
r			-							Rec	arge:	Yes]	Calendar Year	GW	SW	Total	GW%	SW%
										Rec	overy:	No		2011	11.38	4.08	15.46	74%	<mark>26</mark> %
Baseline	Data												-	2012	9.83	6.46	16.30	60%	40%
Actual 201	9 - Wet Yea	r Use (TAF)	1		Actual 2022	2 - Dry Year	Use (TAF))						2013	16.28	0.00	16.28	100%	0%
GW	SW	Total	GW %	SW %	GW	SW	Total	GW %	SW %]				2014	13.77	0.00	13.77	100%	0%
7.08	6.40	13.48	53%	47%	13.72	0.00	13.72	100%	0%					2015	11.72	0.00	11.72	100%	0%
			-							-				2016	12.19	0.42	12.61	97%	3%
GSPs Curr	ent Conditi	ons-WetY	ear Use (TA	F)	GSPs Curre	ent Conditio	ons - Dry Y	ear Use (TA	F)					2017	12.43	1.30	13.73	91%	9%
GW	SW	Total	GW %	SW %	GW	SW	Total	GW %	SW %] [2018	13.34	0.00	13.34	100%	0%
10.68	3.36	14.04	76%	24%	13.24	0.80	14.04	94%	6 %	1				2019	7.08	6.40	13.48	53%	47%
ļ			-					-		-				2020	14.11	0.39	14.50	97%	3%
Agency W	B Baseline	- Wet Year	Use (TAF)		Agency WE	Baseline -	- Dry Year	Use (TAF)						2021	14.22	0.00	14.22	100%	0%
GW	SW	Total	GW %	SW %	GW	SW	Total	GW %	SW %					2022	13.72	0.00	13.72	100%	0%
11.87	3.96	15.83	75%	25%	16.07	0.00	16.07	100%	0%	1						-			
				· · · · ·						-									
Water Ba	nk - 65/55	Scenario								Water	Bank -	95/95 Sc	enario						
											-					_			
Wet Year -	Recharge /	Action (TAF)		Dry Year -	Recovery A	iction (TAP	-)		Wet Ye	ar - Red	charge Ac	tion (TAF)		Dry Year Addition	- Recover	y Action (TAF)	
Additional SW Use	Required I	mprovemen	nts		Additional GW Use	Required Ir	mproveme	ents		Additio	nal SW	Required	d Improvements		al GW	Re quire d	Improvem	rents	
11.6	Evisting ca	nacity			0.0	Evisting car	nacity				6	ΝΔ				ΝΔ			
Source	Fairbairn/S	ac River			Source					So So	urce	Fairbaim/	Sac River		Source				
000100	1 di buiri, cu											T anount,			Course	L			
Agency W	et Year Use	with WB R	echarge (T	ΔF)	Agency Dr	v Vear User	with WB R	ecovery (TA	1E)	Agenc	Wet Y	earlise w	ith WB Recharge (TAF)	Agency D	ny Year U	ee with Wi	R Recove	ny (TAF)
GW	SW	Total	GW %	SW %	GW	SW	Total	GW %	SW %		W	SW	Total GW %	SW %	GW	SW	Total	GW %	SW %
0.29	15.54	15.83	2%	98%	16.07	0.00	16.07	100%	0%	4	27	11.56	15.83 27	% 73%	16.07	0.00	16.07	100%	0%
																			1

CalSim-CoSANA Updates

CalSim 3 Updates - Summary

- Baseline model based on LTO 2024 Draft CalSim 3 model
- Demands updated for American River basin
- Minimum and maximum groundwater pumping limits implemented to make model consistent with CoSANA and GSP assumptions and based inputs from Stakeholders
- Demand units in American River Basin disaggregated to match the CoSANA demand units
- Replaced C2VSim based GW DLL terms for seepage, SW runoff, and return flows to use CoSANA net accretions in Consumnes, American and Mokelumne River basins (CoSANA model domain).

Refinements to CalSim Demand Units to match CoSANA

- Demand Units disaggregation
 - Certain CalSim Demand Units were disaggregated into sub-units to allow to match the demand units in CoSANA.
- Data Disaggregation
 - Demand data was disaggregated proportional to the annual demand for each user
 - Pattern is assumed to be same as the pattern for combined demand in CalSim LTO 2024 draft model.
- Operations/Diversion Disaggregation
 - Diversions were disaggregated for each of the subunits in CalSim.
 - This included application of separate groundwater pumping limits and different water right/contract limit for each of the sub-units

Accretions Computation

Accretion_j = $Q_j - Q_i + sum(Div_{i,j})$

 Q_i = Streamflow at node I Di v_i = Diversions between nodes i and j Accretion_j = Accretion added at node j

CalSim – CoSANA Integration

- Demand and Streamflow mapping
- Refinements to CalSim Demand Units to match CoSANA demand units
- Accretions Computation
- Tools for data inputs from CoSANA to CalSim

CoSANA Overview

- Regional integrated water resources model developed as an upgrade and enhancement of the existing SacIWRM
- Built on Integrated Water Flow Model (IWFM) framework

CoSANA Overview

- Model area
 - North American, South American, and Cosumnes Groundwater Subbasins
- Layering
 - 5 layers
- Elements
 - 24,171 elements with an average element area of 37 acres
- Stream system
 - 27 simulated streams with 51 reaches
- Land Use
 - 24 land use types, including 20 agricultural crops
- Water Supply
 - Surface water, groundwater, and recycled water supply to agricultural and urban water purveyors
- Remediation Pumping
 - Groundwater extraction and cleanup at 4 remediation sites
- Hydrologic period
 - Water Years 1970-2019 on a monthly time step

What are the advantages of CoSANA over GW DLL?

- Finer resolution compared with C2VSIM (GW-DLL) provides ability to model SW-GW interactions at each stream reach in CalSim.
- Stream losses are better represented
- Capability to model recharge and recovery at well level for modeling water bank operations

American River – CoSANA Stream Nodes vs. CalSim Stream Nodes

What are the advantages of CoSANA over GW DLL?

• Finer resolution compared with C2VSim (GW-DLL) provides ability to model SW-GW interactions at each stream reach in CalSim.

C2VSim CG Model Grid

C2VSim FG Model Grid

CoSANA Model Grid

Net Accretions

Tools Developed

- 1. CoSANA postprocessor and Net accretions calculator
 - Imports stream-flows and diversions from CoSANA budget files
 - Maps CoSANA stream-flows to appropriate CalSim nodes
 - Computes net accretions for each CalSim node within CoSANA model domain

Tools Developed

- 2. CalSim-CoSANA Data transfer template
 - Imports diversions and groundwater pumping from CalSim
 - Maps CalSim diversions and GW pumping to appropriate CoSANA demand units
 - Post processes CalSim data for CoSANA and converts into CoSANA input format

CoSANA-CalSim Integration

- Developed template that takes single-page of CalSim data and disaggregates to CoSANA input files
- Templates are complete for updating supply mix

Part B: D_BRR017_23_NAD_D_ABN010_24_NA2_D_ARN024_24_NA1_D_VTPFS5_24_NU2_1_D_FTR03_17S_AD_D_SAC078_22_SA1_D_FOLS D_FUCRSION DIVERSION DIV	C
Part C: DIVERSION DID DID DID	_WTPRSV [
Part E: MON MON MON MON MON MON MON MON Part E: MUNN L020A L2020A	N E
Part : UMON IMON <	
	1
Beg. Dite: 31-Oct-21	L
Beg. Time: 2400 2400 2400 2400 2400 2400 2400 End Date: 30 -Sep-15 Dat Type: PER-VER PE	31-Oct-21
	2400
	30-Sep-15
Units: CFS	2400
Data Type: PER-AVER	0
03/31/2014 0.00 0.00 20.80 0.46 0.00 03/31/2014 82.26 10.79 28.62 27.42 3.96 0.00 04/30/2014 2259.94 41.23 57.86 41.10 16.69 0.00 05/31/2014 273.84 43.52 70.13 51.81 18.14 0.00 06/30/2014 273.38 44.06 67.68 55.00 18.42 0.00 06/31/2014 19.40.1 31.34 55.37 57.66 16.49 0.00 06/30/2014 79.36 12.46 37.73 51.02 3.33 0.00 10/31/2014 90.13 14.15 26.96 38.32 3.18 0.00 11/30/2014 90.01 0.00 0.63 24.57 4.03 0.00 0/31/2015 6.00 0.00 0.06 11.66 0.00 0.00 0/31/2015 6.023 0.00 0.00 16.66 0.00 0.00 0/31/2015 80.23 </th <th>₹ F</th>	₹ F
04/30/2014 82.26 10.79 28.62 27.42 3.96 0.00 05/31/2014 253.94 41.22 57.86 41.10 16.69 0.00 05/31/2014 273.46 43.52 77.13 51.81 18.18 0.00 07/31/2014 273.83 44.06 67.86 59.60 16.49 0.00 09/30/2014 134.01 31.34 55.37 57.66 16.49 0.00 09/30/2014 79.36 12.46 37.73 51.02 3.53 0.00 10/31/2014 90.13 14.15 25.66 38.32 3.18 0.00 11/30/2014 90.00 0.06 0.46 15.01 2.75 0.00 11/30/2014 0.00 0.00 0.66 2.457 4.03 0.00 11/30/2014 0.00 0.00 0.66 0.00 0.00 0.00 03/31/2015 8.0.32 10.05 2.24 2.26 0.00 0.00 05/31/2015 </th <th>34.23</th>	34.23
05/31/2014 229.94 41.23 57.86 41.10 16.69 0.00 05/31/2014 273.46 43.52 70.13 51.81 18.18 0.00 07/31/2014 273.83 44.06 67.86 59.60 18.42 0.00 08/31/2014 194.01 31.34 55.37 57.66 16.49 0.00 09/30/2014 79.36 12.46 67.73 51.02 3.53 0.00 10/31/2014 90.13 14.15 25.96 38.32 3.18 0.00 11/30/2014 64.03 0.00 0.63 24.57 4.03 0.00 01/31/2015 64.03 0.00 0.63 11.62 2.29 0.00 01/31/2015 6.03 0.00 0.04 19.01 2.75 0.00 01/31/2015 6.023 0.00 0.00 0.00 0.00 0.00 05/31/2015 8.12 19.11 49.43 41.10 14.60 0.00 05/31/2015 </th <th>44.77</th>	44.77
06/30/2014 273.46 43.52 70.13 51.81 18.18 0.00 07/31/2014 273.83 44.06 67.86 55.60 16.49 0.00 09/30/2014 79.40 13.14 55.37 57.66 16.49 0.00 09/30/2014 79.36 12.46 37.73 51.02 3.53 0.00 10/31/2014 90.13 14.15 25.96 88.32 3.18 0.00 11/30/2014 90.40 0.00 0.63 24.57 4.03 0.00 12/31/2014 0.00 0.00 0.36 11.62 2.29 0.00 0/2/28/2015 0.00 0.00 0.36 11.62 2.9 0.00 0/31/2015 0.00 0.00 18.66 0.00 0.00 0.00 0/31/2015 0.02 0.00 0.00 0.00 0.00 0.00 0/31/2015 8.48 0.00 24.57 20.80 0.00 0.00 0/31/2015 <t< th=""><th>66.78</th></t<>	66.78
07/31/2014 273.83 44.06 67.86 59.60 18.42 0.00 07/31/2014 134.01 31.34 55.37 57.66 16.49 0.00 09/30/2014 79.36 12.46 37.73 51.02 3.33 0.00 10/31/2014 90.31 14.15 22.69 38.32 3.18 0.00 11/30/2014 94.03 0.00 0.63 24.57 4.03 0.00 12/31/2014 0.00 0.00 0.64 19.01 2.75 0.00 02/31/2015 0.00 0.00 0.46 19.01 2.75 0.00 02/32/2015 0.00 0.00 0.46 19.01 2.75 0.00 02/32/2015 0.00 0.00 0.456 0.00 0.00 0.00 02/31/2015 8.48 0.00 0.4257 20.80 0.00 0.00 06/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/31/2015	83.45
08/31/2014 194.01 31.34 55.37 57.66 16.49 0.00 09/30/2014 79.36 12.46 37.72 51.02 3.33 0.00 10/31/2014 90.13 14.15 26.96 38.32 3.18 0.00 11/30/2014 84.03 0.00 0.63 24.57 4.03 0.00 0/31/2015 46.13 0.00 0.36 11.62 2.29 0.00 0/31/2015 6.03 0.00 0.36 11.62 2.9 0.00 0/31/2015 6.03 0.00 0.36 11.62 2.9 0.00 0/31/2015 6.00 0.00 0.36 11.62 0.00 0.00 0/31/2015 50.02 10.95 52.04 27.42 3.65 0.00 0/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 0/31/2015 251.72 39.11 49.43 14.10 14.60 0.00 0/31/2015 <td< th=""><th>93.40</th></td<>	93.40
09/30/2014 79.36 12.46 37.73 51.02 3.53 0.00 10/31/2014 90.13 14.15 25.96 38.32 3.18 0.00 11/30/2014 90.40 0.00 0.63 24.57 4.63 0.00 12/31/2014 0.00 0.00 0.64 19.01 2.75 0.00 12/31/2014 0.00 0.00 0.44 19.01 2.29 0.00 02/32/2015 0.00 0.00 11.62 2.29 0.00 02/32/2015 8.02 0.00 0.00 18.66 0.00 0.00 04/30/2015 8.02.3 10.95 32.04 27.42 3.65 0.00 06/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/31/2015 270.53 42.67 65.72 51.81 18.99 0.00 06/31/2015 264.73 42.58 64.71 55.60 17.55 0.00 06/31/2015 194.16	59.11
10/31/2014 90.13 14.15 26.96 38.32 3.18 0.00 11/30/2014 84.03 0.00 0.63 24.57 4.03 0.00 12/31/2014 0.00 0.00 0.63 24.57 4.03 0.00 12/31/2014 0.00 0.00 0.44 19.01 2.75 0.00 0/31/2015 46.13 0.00 0.36 11.62 2.29 0.00 0/31/2015 0.00 0.00 0.86 0.00 0.00 0.00 0/31/2015 8.48 0.00 24.57 20.80 0.00 0.00 0/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 0/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 0/31/2015 250.73 42.67 65.72 51.81 18.59 0.00 0/31/2015 254.73 42.68 64.71 55.60 17.35 0.00 0/31/2015 <t< th=""><th>79.97</th></t<>	79.97
11/30/2014 84.03 0.00 0.63 24.57 4.03 0.00 11/30/2014 0.00 0.00 0.44 1501 2.75 0.00 0/31/2015 46.13 0.00 0.36 11.62 2.29 0.00 02/32/2015 0.00 0.00 0.36 11.62 2.29 0.00 02/32/2015 0.00 0.00 18.66 0.00 0.00 04/30/2015 8.48 0.00 24.57 20.80 0.00 0.00 04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 06/30/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/30/2015 270.33 42.67 65.72 51.81 18.99 0.00 07/31/2015 264.73 42.58 64.71 55.60 17.85 0.00 08/31/2015 19.416 31.41 52.13 50.06 17.35 0.00 09/20/2015 29.29	0.00
12/31/2014 0.00 0.04 19.01 2.75 0.00 01/31/2015 46.13 0.00 0.36 11.62 2.29 0.00 02/32/2015 0.00 0.00 0.86 11.62 2.29 0.00 03/31/2015 8.48 0.00 24.57 20.80 0.00 0.00 04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 06/30/2015 251.72 39.11 4943 41.10 14.60 0.00 06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 07/31/2015 254.73 42.58 64.71 55.60 17.35 0.00 08/31/2015 194.16 31.41 52.13 50.66 17.35 0.00	0.00
01/31/2015 46.13 0.00 0.36 11.62 2.29 0.00 02/28/2015 0.00 0.00 0.00 18.66 0.00 0.00 03/31/2015 8.48 0.00 24.57 20.80 0.00 0.00 04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 06/30/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 06/30/2015 264.73 42.58 64.71 59.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	28.85
02/28/2015 0.00 0.00 18.66 0.00 0.00 03/31/2015 8.48 0.00 24.57 20.68 0.00 0.00 04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 05/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/30/2015 27.05.3 42.67 65.72 51.81 18.59 0.00 07/31/2015 264.73 42.58 64.71 59.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	27.76
03/31/2015 8.48 0.00 24.57 20.80 0.00 0.00 04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 05/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 07/31/2015 264.73 42.68 64.71 55.60 17.39 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	29.02
04/30/2015 80.23 10.95 32.04 27.42 3.65 0.00 05/31/2015 251.72 39.11 49.43 41.10 14.60 0.00 06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 07/31/2015 264.73 42.58 64.71 59.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	34.23
05/31/2015 25.172 39.11 49.43 41.10 14.60 0.00 06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 07/31/2015 264.73 42.58 64.71 59.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	44.77
06/30/2015 270.53 42.67 65.72 51.81 18.59 0.00 07/31/2015 264.73 42.58 64.71 55.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.66 17.35 0.00 09/37/2015 194.16 31.41 52.13 50.06 17.35 0.00	66.78
07/31/2015 264.73 42.58 64.71 59.60 19.00 0.00 08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00 00/0/001 19.00 13.1 4.22 20.00 14.55 0.00	83.45
08/31/2015 194.16 31.41 52.13 50.06 17.35 0.00	0.00
00/20/2015 92.92 12.21 4.22 29.79 4.25 0.00	0.00
05/50/2013 65:85 15:51 4:52 26:76 4:20 0:00	0.00

C*********	*********	********	********	******	*******	*******	*******	******	**			
c	1	Surface W	ater Dive	rsion D	ata Spec	ificatio	ns					
C												
C The foll	lowing list	ts the ti	me-series	surfac	e water	diversio	ns for					
C each of	the stream	n nodes w	here surf	ace div	ersions	have bee	n specif:	led.				
	Number of	f cunfaca	water di	unerton	. (thermos	if nec fi	100.000	used)			
E EACTOW	Conversio	n factor	for such	ace wat	s (or pa	ciones .	11 033 11	ries are	useu)			
C PACIDV;	Conversite	on factor	TOP SUPE	ace wat	er uiver	51002						
	10 15 0	seu to co	nvert oni	y the s		omponent	or the t	anit;				
2	20 NOT .	Include d	he conver	Sion Ta	to this	file co	- AC ET /A	и спе и	nic.			
2	e.8.	Consiston	t unit un	ad in c	in this	1116	- CU ET/0	MAX .				
c c		Enton EAC	TDV (AC-E			T /MONITHY	- 42560 0	2				
č	(conversion of NONTH -> DAY is performed automatically)											
	(conversion of rown -> bit is performed automatically)											
c 10,00,	* Enter	any numb	er if tim	a-track	ing onti	on is on	01101 3101	uucu				
	Bonotiti	any nullo	er it tim	e-track	ing oper	diversi	on data					
c	* Enter	e if ful	1 time ce	cies da	ta ic cu	nnlied	on auca					
č	* Enter	any numb	er if tim	e-track	ing onti	on is on						
C DSSEL 1	The name	of the D	ss file f	or data	innut (maximum	50 charac	ters):				
c	* Leave	blank if	DSS file	is not	used fo	r data i	nnut					
c												
c												
c v/	ALUE				D	ESCRIPTI	ON					
c												
14	14				/	NCOLDV						
43	3560.0				/	FACTOV						
1					/	NSPDV						
0					/	NEQDV						
					/	DSSFL						
C**********	*********	********	********	*******	*******	*******	********	*******	**			
c		Surface	Water Di	version	Data							
C		(REA	D FROM TH	IS FILE)							
C												
C List the	alversion	n data be	10W, 1T 1	C WIII	not be r	ead trom	a USS TI	ue (1.e	•			
C DSSFL IS	a terc bia	ik above)										
	Time											
C ADTVS	Diversion	nate and	mavimum	diversi	on rates	(if any		onding	to			
c //01/03,	the stream	am node s	necified	in dive	rsion sp	ecificat	ion file	[L^3/T	ĩ			
č												
c												
C ITDV /	DIVS(1)	ADIVS(2)	ADIVS(3)									
c												
c		1	2	3	4	5	6	7	8			
10/31/1969_3	24:00	0	3593.6	265	57.4	173.7	1189.6	154.5	753.1			
11/30/1969_2	24:00	0	0	0	0	0	234.3	0	458.2			
12/31/1969_2	24:00	0	0	0	0	0	196.3	0	344.4			
01/31/1970_2	24:00	0	0	0	0	0	207.8	0	324.9			
02/28/1970_2	24:00	0	0	0	0	0	190.3	0	289.7			
03/31/1970_2	24:00	0	0	0	0	0	359.8	0	354.4			
04/30/1970_3	24:00	337	1129.6	868.5	188	0	822.5	159.4	396.2			
05/31/1970_2	24:00	1025	19835.6	724.4	156.8	418.6	1418.1	220.5	654.8			
06/30/1970_2	24:00	936	19294.7	385.8	83.5	503.9	2047.1	333.6	808.8			
07/31/1970_2	24:00	1577	24954.9	190.4	41.2	883.8	2461.2	361.1	1048.8			
08/31/1970_2	(4:00	1430	24928.4	19.5	4.2	637.6	2563.9	361.6	1064.8			
09/30/1970_3	(4:00	186	11499.7	0.0	1.4	108.4	2297.4	342.4	989.2			
	1.0	64	21112 C	26.5	57.4	173 7	1189 6	154 5	753.1			

Phases of Water Bank Analysis

CoSANA -CalSim 3 Integration Initial Scenario Analysis using GSP Baseline Consistent CalSim-CoSANA Existing and Future Conditions baselines

Proposed Water Bank Alternatives

Water Bank Baselines and Scenarios

• Baselines

- Existing Conditions Baseline
- Future Conditions Baseline with Climate Change
- Cumulative Conditions Baseline with Climate Change
- Scenarios
 - Water Bank Scenario under Existing Conditions
 - Water Bank Scenario under Future Conditions
 - Water Bank Scenario under Cumulative Conditions

Groundwater Impacts and Metrics for Analysis

CalSim Results

- CalSim Results for Sacramento Water Bank Baseline Run compared with DCR 2021
- These results represent 2 iterations between CalSim and CoSANA models
- Net accretions changes were negligible after 2 iterations

Evaluation/Convergence Metrics

	Iteration		1	1	1	2	2	2		3		3	
Туре	Metric	Unit	Min	Max	Avg	Min	Max	Avg	Diff %	Min	Max	Avg [Diff %
	Sacramento River at Keswick (C_KSWCK)	CFS	2,768.65	57641.53	8818.568	2,768.65	57641.53	8818.742	0.00%	2,768.65	57641.53	8818.731	0.00%
	Feather River at Thermalito (C_FTR059)	CFS	710.44	46552.74	4332.758	710.44	46552.98	4332.71	0.00%	710.44	46552.75	4332.738	0.00%
	American River at Nimbus (C_NTOMA)	CFS	1.59	32701.04	3597.335	500.00	32701.01	3597.301	0.00%	500.00	32700.69	3597.051	0.01%
	Sacramento River at Freeport (C_SAC049)	CFS	4,957.33	86427.04	22059.89	4,960.29	86426.82	22060.59	0.00%	4,960.29	86426.89	22060.34	0.00%
	Yolo Bypass at Lisbon Weir (C_YBP016)	CFS	35.67	167751.7	4802.34	35.68	167751.9	4801.574	0.02%	35.50	167751.4	4801.32	0.01%
	San Joaquin River at Vernalis (C_SJR070)	CFS	321.16	51606.7	4088.333	321.15	51605.35	4086.455	0.05%	321.07	51607.06	4088.328	0.05%
	Sacramento River Downstream of North Delta Diversion (C_SAC041)	CFS	5,005.53	88095.04	22295.76	5,007.43	88094.56	22296.41	0.00%	5,007.43	88094.63	22296.16	0.00%
	Net Delta Outflow Index (NDOI)	CFS	3,000.00	312924.8	24117.7	3,000.00	312924.8	24116.72	0.00%	3,000.00	312924.5	24117.38	0.00%
	X2 Position (X2_PRV)	KM	49.02	94.28667	75.7386	49.02	94.28667	75.74153	0.00%	49.02	94.28667	75.74129	0.00%
	Combined Old and Middle River (C_OMR014)	CFS	-11,988.93	24366.99	-4776.9	-11,990.58	24366.98	-4777.44	0.01%	-11,982.98	24367.03	-4777.34	0.00%
	Total Delta Exports (C_CAA003 + C_DMC000)	CFS	900.00	13847.2	3574.32	900.00	13847.2	3573.858	0.01%	900.00	13847.2	3574.335	0.01%
	SWP Exports (C_CAA003_SWP + C_CAA003_WTS)	CFS	9.83	9247.2	3449.195	9.83	9247.2	3448.242	0.03%	9.83	9247.2	3449.279	0.03%
Systemwide Flows	CVP Exports (C_CAA003_CVP + C_DMC000)	CFS	586.77	7722.131	101.4572	586.77	7721.289	101.9752	0.51%	586.77	7724.227	101.3873	0.58%
	Emmaton Salinity (EM_EC_Month)	UMHOS/CM	159.63	2303.627	717.2254	159.62	2303.449	717.4577	0.03%	159.63	2304.484	717.3419	0.02%
	Jersey Point Salinity (JP_EC_Month)	UMHOS/CM	159.63	2303.627	717.2254	159.62	2303.449	717.4577	0.03%	159.63	2304.484	717.3419	0.02%
	Rock Slough Salinity (RS_EC_Month)	UMHOS/CM	103.00	1129.822	424.4682	102.99	1130.086	424.5793	0.03%	102.99	1130.218	424.5262	0.01%
Salinity	Collinsville Salinity (CO_EC_Month)	UMHOS/CM	195.65	12762.58	3651.496	195.65	12760.32	3652.766	0.03%	195.65	12773.81	3652.55	0.01%
	End of September Storage in Shasta (S_SHSTA)	TAF	602.11	3400	2960.911	602.98	3400	2959.963	0.03%	602.38	3400	2959.904	0.00%
	End of September Storage in Trinity (S_TRNTY)	TAF	455.15	1975	1454.12	455.36	1975	1453.917	0.01%	455.23	1975	1453.928	0.00%
	End of September Storage in Folsom (S_FOLSM)	TAF	254.49	752	589.3549	254.53	752	588.9437	0.07%	254.44	752	588.8368	0.02%
	End of September Storage in Oroville (S_OROVL)	TAF	186.86	3351	1960.848	186.67	3351	1960.751	0.00%	186.08	3351	1960.773	0.00%
	End of May Storage in Shasta (S_SHSTA)	TAF	1,742.47	4552.1	4097.136	1,743.48	4552.1	4095.833	0.03%	1,742.46	4552.1	4095.793	0.00%
	End of May Storage in Trinity (S_TRNTY)	TAF	776.11	2420	1892.546	776.11	2420	1892.276	0.01%	776.00	2420	1892.289	0.00%
	End of May Storage in Folsom (S_FOLSM)	TAF	338.27	967	829.9347	338.34	967	829.9107	0.00%	338.25	967	829.9087	0.00%
	End of May Storage in Oroville (S_OROVL)	TAF	797.55	3538	2910.248	797.36	3538	2910.572	0.01%	796.76	3538	2910.471	0.00%
	Average Storage in Shasta (S_SHSTA)	TAF	550.00	4552.1	3400.278	550.00	4552.1	3399.426	0.03%	550.00	4552.1	3399.413	0.00%
	Average Storage in Trinity (S_TRNTY)	TAF	441.89	2447.65	1635.672	442.09	2447.65	1635.424	0.02%	441.96	2447.65	1635.439	0.00%
	Average Storage in Folsom (S_FOLSM)	TAF	90.00	967	639.4872	90.00	967	638.912	0.09%	90.00	967	638.9866	0.01%
Storage	Average Storage in Oroville (S_OROVL)	TAF	39.84	3538	2312.334	39.16	3538	2312.444	0.00%	37.72	3538	2312.331	0.00%
	Total Accretions	TAF	-883.78	443.90	47.29	-884.44	444.14	47.26	0.06%	-884.44	444.14	47.26	0.00%
	Bear River Accretions	TAF	-1.06	2.17	0.69	-1.09	2.16	0.68	1.34%	-1.09	2.16	0.68	0.00%
	Feather River Accretions	TAF	-6.98	574.61	0.68	-6.98	574.61	0.68	0.05%	-6.98	574.61	0.68	0.00%
	Sacramento River Accretions	TAF	-1,431.95	138.98	17.66	-1,431.95	139.25	17.65	0.06%	-1,431.95	139.25	17.65	0.00%
	American River Accretions	TAF	-1.71	23.77	3.62	-1.81	23.63	3.62	0.09%	-1.81	23.63	3.62	0.00%
	Consumnes River Accretions	TAF	-1.59	125.64	10.27	-1.59	125.64	10.27	0.00%	-1.59	125.64	10.27	0.00%
CoSANA Accretions	Mokelumne River Accretions	TAF	-31.18	100.03	7.53	-31.18	100.04	7.53	0.01%	-31.18	100.04	7.53	0.00%

Water Bank operations metrics

Water Bank Storage	Timeseries of WB storage - NASb - SASb - Project area (M&I boundaries)
Leave-behind	 Cumulative leave-behind Long-term increase in basin storage less the WB storage Hydrograph of selected wells.
Net stream seepage (potential losses)	 Change in seepage water budget component as long-term average and by year type American river Sac River Cosumnes, Bear, and Feather
Net Boundary flow (potential losses)	Change as long-term average and by year type - between NASb and SASb - Adjacent subbasins

GSPs Compliance Metrics (CoSANA)

Chronic Lowering of Groundwater Levels	Change in # of exceedance of MTs by year type. Change in # of exceedance of MOs by year type.
Reduction of Storage	Change in storage by year type - NASb - SASb - Project area (M&I boundaries)
Stream Depletions due to GW pumping	 Change in stream flows by year type and by month, exceedance charts American river Sac River Cosumnes, Bear, and Feather
Degraded GW quality	Qualitative
Land subsidence	Qualitative

- GSP Indicators:
 - NASb: >20% of wells exceed MTs for two consecutive fall measurements
 - SASb: >25% of wells exceed MTs for three consecutive years
- Adopt the approach used for the City of Sacramento EIR:
 - hydrographs showing GWL averages by WY-types
 - tabulated exceedance violations to show consistency with the GSPs

Groundwater Budget Comparison

- NASb
- SASb
- Project area (M&I boundaries)

WB ECBL – Water Bank Area

Cumulative Change in Storage Comparison

Stream Budget Comparison

- American River
 - Upstream (Reaches 23, 24)
 - Midstream (Reach 25)
 - Downstream (Reach 26)
- Sacramento River
 - Above American River (Reaches 3, 12, 20)
 - Below American River (Reaches 27,35)
- Cosumnes River (Reaches 37, 38, 40, 42)
- Bear River (Reach 1)
- Feather River (Reach 2)
- Mokelumne River (Reaches 46, 47, 48)

Stream Budget Average A	nnual (AFY)	ECBL_Iter2								
Stream	Reach Number	Stream Inflow ("+" = stream gain; "-" = stream loss)		Return Flow (+)	Sa Diversions (+)	Seepage (Gain from GW)				
American River	23, 24, 25, 26	10,481,069	10,401,121	0	60,829	-19,120				
Upstream	23,24	5,224,642	5,225,837	0	0	1,195				
Midstream	25	2,677,950	2,578,478	0	60,829	-38,643				
Downstream	26	2,578,478	2,596,806	0	0	18,328				
Sacramento River	3, 12, 20, 27, 35	73,902,470	73,914,471	52,563	112,022	-40,459				
Above American River	3, 12, 20	40,977,263	40,956,170	8,350	89,265	27,851				
Below American River	27,35	32,925,207	32,958,302	44,213	22,758	-68,310				
Cosumnes River	37, 38, 40, 42	1,973,764	1,987,932	7,378	9,461	-29,961				
Bear River	1	365,836	401,270	3,667	0	16,749				
Feather River	2	5,696,064	5,659,037	0	11,000	-26,027				
Mokelumne River	46, 47, 48	2,307,473	2,280,784	1,341	42	-33,135				

Stream Hydrograph & Exceedance Chart

Stream Flow Reporting Points (<u>CalSim</u> 3 & <u>CoSANA</u>)

Bear R. at Feather R. confluence Sacramento R. at Verona Sacramento R. at American R. confluence American R. at Sacramento R. confluence Cosumnes R at Mokelumne R. confluence Mokelumne R. at Cosumnes R. confluence Sacramento R downstream Freeport (<u>CoSANA</u> outflow)

WB ECBL

WB ECBL

Hydrograph

GSPs Compliance Metrics (CoSANA)

- GSP Indicators:
 - NASb: >20% of wells exceed MTs for two consecutive fall measurements
 - SASb: >25% of wells exceed MTs for three consecutive years

WB ECBL – NASb

Loss Factor Analysis*

- The concept of **"loss"** refers to the physical movement of water out of the basin, which the Water Bank will analyze using scientific methods.
- Loss is determined by monitoring and accounting for water that migrates underground, potentially moving between basin boundaries, and as water that may seep into river systems, or may include reduced recharge due to recharged water.
- By doing so, the Water Bank aims to effectively account for these losses so that when banked water is later extracted, Water Bank managers will know more precisely the actual volume of water that remains and may be available for beneficial uses.

Engagement – Sacramento Regional Water Bank (sacwaterbank.com)

Leave Behind Amount for Water Bank*

- **"Leave behind"** refers to the intentional policy decision of dedicating a volume of recharged water in the aquifer to help ensure long-term sustainability.
- For example, the Water Bank plans to implement a leave-behind policy for agencies storing water with the intent of transferring it out of the basin after local needs are met. This policy mandates that a portion of the stored water remains in the basin and is never extracted as part of Water Bank operations. The primary goal of a "leave behind" is to build a reserve of groundwater that contributes to the long-term stability and resilience of the region's water supply.

* <u>Engagement – Sacramento Regional Water Bank (sacwaterbank.com)</u>

Summary

- The modeling approach for Sacramento Area Water Bank is unique.
- The approach employs integrating Statewide operations model with local integrated hydrologic model and/or groundwater model.
- The modeling approach is currently used to support significant policy decisions and environmental permitting process for the Water Bank.
- This approach can be used in other similar conditions in the state, where groundwater banking opportunities are considered.

Discussions/Questions?

Contact

- Puneet Khatavkar
 - puneet.khatavkar@stantec.com
- Jingnan Zhou
 - jzhou@woodardcurran.com