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What are PFAS?

• Per- and polyfluoroalkyl substances

– Thousands of different compounds

– Two compounds most persistent in environment

– PFOA: Perfluoro octanoic acid (C-8)

– PFOS: Perfluoro octane sulfonic acid (C-8)

• Unique physical-chemical properties

– C-F bond is one of the strongest

– Resistant to water, oil, and grease

– Persistent, bioaccumulative

• Analytical methods can reliably measure ng/L or 
ppt levels

– 1 ppt = 30 seconds in one million years

– 1 ppt = one drop of water in 20 Olympic 
swimming pools
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PFOA, PFOS and many more

Adapted from EPA 2021
www.epa.gov/pfas

http://www.epa.gov/pfas


Why are PFAS a big deal?

• Widely used in industry and consumer products
– Multiple sources, not just aqueous film forming foams (AFFF)

• Leach from soil, migrate in groundwater, do not 
degrade
– Groundwater, storm water, surface water are primary media 

of concern

• Reliably detectable at levels below 10 parts per trillion
– Precautions needed when sampling environmental media

• Correlated with a range of health effects in humans 

• Limited treatment options

• Heightened public and regulatory focus
– 3M & Dupont settlements $12 Billion

– In news and movies
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What are the sources of PFAS?

• More than 200 use categories and 
subcategories for more than 1400 PFAS

• Both industrial processes and consumer 
products

– Non-stick cookware

– Pizza box

– Firefighting foams

– Plating fume suppressant
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PFAS in consumer products
Implications: WWTPs and Landfills

• Paper and packaging (including 
pizza boxes, microwave 
popcorn bags)

• Clothing, sporting equipment

• Ski and snowboard waxes

• Non-stick cookware

• Polishes and waxes

• Hydraulic fluids

• Windshield wipers

• Adhesives

• Shampoo, hair conditioners, 
sunscreen, cosmetics, toothpaste, 
dental floss

• Pesticides and herbicides
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Source: https://pfas-1.itrcweb.org/wp-content/uploads/2017/11/pfas_fact_sheet_history_and_use__11_13_17.pdf
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Types of Sites with potential for PFAS

• Anywhere that AFFF fire suppression was used or tested
– Airports, petroleum refineries/storage, manufacturing 

• Manufacturing – use of PFAS-containing mixtures
– Paints, waxes and varnishes; mold release compounds; etc
– Electro-plating tank vapor suppressant

• Wastewater treatment plants (WWTP) 
– Discharge to surface water and biosolids/land applications

• Redevelopment – anywhere with PFAS-contaminated soil or groundwater
– Disposal of soil and management of groundwater associated with capital projects

• Landfills – receiving consumer and industrial wastes
– Leachate collection and treatment / migration to surface water
– Migration to groundwater

* Non-point sources - Atmosphere, rainwater, sea spray aerosols
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Safe Drinking Water Act: EPA’s New MCLs
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• Very low values (parts per trillion)

• 5 chemicals with individual MCL

• Hazard index target of 1 for a combination of 2 
or more of PFHxS, PFNA, HFPO-DA, and PFBS

MCLG is a non-enforceable health-based goal of zero. Per EPA, MCLG reflects the latest science 
showing that there is no level of exposure to these two PFAS without risk of health impacts



How prevalent are PFAS in drinking water?

• Unregulated Contaminant Monitoring 
Rule (UCMR3)

– National monitoring 2013 – 2015

– Large PWs (>10,000 people)

– six PFAS compounds (70 ppt MRL)

• UCMR5

– National monitoring 2023-2025

– Small PWs (3,300-10,000 and some* < 
3,300)

– 29 PFAS (latest MCLs)
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UCMR5 Data through July 2024

*Total number of unique PWSs with one or more averages 
greater than respective PFAS MCL = 393 of 3,463 (11%)



State Water Resources Control Board Investigative Orders

• As part of statewide effort, SWRCB implemented phased investigation to obtain  
preliminary understanding of PFAS concentrations at certain facilities

– data to inform decisions on regulatory action in anticipation of regulatory standards

• Phase I:

– 31 airports 

– 252 municipal solid waste landfills 

– >1,000 drinking water wells/sources

• Phase II and III

– plating facilities 

– refineries, bulk terminals, and non-airport fire training areas

– wastewater treatment & pre-treatment plants  

– domestic wells 
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PFAS Fate & Transport



PFAS Fate & Transport

• PFAS have unique, surface-active properties that 
impact their fate & transport in the vadose zone.

• These surface-active properties cause PFAS to be 
retained at solid –water and air–water interfaces.

• Evidence suggests that due to increased retention, 
vadose zones can potentially serve as long-term 
sources of contamination to groundwater.
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Air-water Interfacial Adsorption

• Retention at these air–water interfaces is largely 
dependent on the amount of interfacial area 
available for sorption, and PFAS concentrations

• Hydrophobicity and PFAS chain-length are directly 
correlated to retention at these interfaces

• Sorption at these interfaces can significantly impact 
PFAS leaching into groundwater

• Sandy soils at lower saturation may retain higher 
amount of PFAS than clays at higher saturation
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Sorption to Air-Water Interface

Measurements of soils parameters, surface area, PFAS at Davis Monthan Air Force Base

from Brusseau (pers. comm., 2024)

PFAS 

99% PFAS mass 
within 3m bgs
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PFAS Fate & Transport – Vadose Zone

• Retention at air–water 
interfaces

– Surfactant properties of PFAS

– Variable water content

– Degree of hydrophobicity

– Composition and concentrations 
of PFAS in solution

– Properties of porous media

– Uptake via biota/plants

• Retention at solid–water 
interfaces

– Amount of organic carbon

– Competitive sorption
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Groundwater flow
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PFAS Fate & Transport – Groundwater

• Advection and dispersion

• Degradation of precursors to terminal PFAS

• Molecular diffusion processes

• Facilitated transport mechanisms

– Colloidal transport

– Formation of micelles

– Presence of co-contaminants

• Sorption to solid surfaces and organics

Water

Porous 
media

PFAS 
micelle

Mobile 
particle

flow



PFAS Sorption at Air-Water Interface



Air-Water Interfacial Area

Air-water interfacial area (AWIA) or Aia

Aia

Soil surface area (SSA)

SSA

SSA

Soil Surface Area (SSA) is an intrinsic property similar to porosity

AWIA depends on SSA and saturation, drainage & imbibition history



Air-Water Interfacial Area, Specific Surface Area and 
Saturation

SSA 1 + ൯ሺ𝛼𝑆𝑤

𝑎 − 2−
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𝑎
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Experimental Empirical

• Most relationships cannot capture AWIA at very low saturations

• Likely conservative due to less AWIA sorption, especially for heavier PFAS

Brusseau (pers. comm., 2024)



AWIA Laboratory Measurement Methods

• Gas-phase interfacial tracer test – 
most representative

• Aqueous interfacial tracer test – 
not accurate at lower water 
saturations

• X-ray microtomography – does 
not capture surface roughness

Brusseau (pers. comm., 2024)
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PFAS Fate & Transport - Conceptualization

Groundwater 

transport

• PFAS present within surface soils 
enters the unsaturated zone via a flux 
of infiltrating water

• PFAS is attenuated as it travels 
through the vadose zone and enters 
groundwater

• Leaching occurs from the vadose zone 
into groundwater

• PFAS is then transported through 
groundwater to downgradient 
receptor points

2-d

3-d conceptual site model

1-d



Governing Equations – what’s new with PFAS

Solid-phase sorption

Air-water interfacial sorption

*Surfactant-induced flow

*Rate-limited sorption

*precursor transformation

𝐶𝑎𝑤 =
1

𝑅𝑔𝑇

𝜎0𝑏

𝑎 + 𝐶
𝐴𝑎𝑤𝐶 = 𝐾𝑎𝑤𝐴𝑎𝑤𝐶

𝑅𝑃𝐹𝐴𝑆 = 1 + 𝐾𝑑

𝜌𝑏

𝜃
+ 𝐾𝑎𝑤

𝐴𝑎𝑤

𝜃
PFAS* retardation coefficient



How does PFAS compare to other “legacy” pollutants?

• Migration in groundwater largely controlled 
by sorption to organic carbon, similar to other 
common organic contaminants 

• Longer-chain PFAS tend to exhibit greater 
sorption and thus slower migration

• BUT, other factors are also important:

– Slower migration/flushing above water table 
due to accumulation at air-water interface

– Precursor transformation affects fate & 
transport

– Low pH and presence of cations slows 
migration

– Absorption into NAPL (e.g., fuel, solvents) 
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Modeling Tools



Modeling Objectives

• Characterization 

• Vadose zone source remediation

– soil-screening levels

– leachate mass flux

• Groundwater plume management
– saturated zone mass flux

– concentration at compliance well

– wellhead treatment

• Source identification & forensic 
analyses



Multiple lines of evidence are needed for PFAS
 source differentiation

• Several PFAS-impacted sites in 
proximity to point sources

• The same compounds have been used 
in many different products

• “Fingerprints” associated with specific 
industries (airport, wastewater 
treatment, landfills, industrial sources) 
have not been established

• PFAS source attribution cannot rely on 
chemistry data alone
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Source identification (For illustration purposes only)

Production 
Well

Former landfill

Wastewater
Airport
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Conceptual Site Model Characterization

Numerical Modeling
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1-D Analytical Modeling Tool

• Vadose-zone – simplified analytical model 
developed by Guo et al., 2022

– Attenuates PFAS in the vadose zone

– PFAS transport driven by infiltration

– Derives PFAS leachate concentrations

• Groundwater – simple mixing, box-model

• Dilutes PFAS leachate concentrations 



• Two-domain model, in which solid-
phase adsorption has both 
equilibrium and kinetic sorption

Vadose Zone Mathematical Model

• Analytical solution to a PFAS-specific, advection-dispersion equation (Guo et al.,2022)
• Transport driven by 1-D, steady-state water flow 

• Homogenous, uniformly unsaturated vadose zone

R = Retardation Factor (-)
C  = Aqueous conc. (µmol/cm3)
t = Temporal resolution (s)
ρb = Bulk density (g/cm3)
αs = First order rate const. kinetic (-)
θ = Water content (-)
Fs = Fraction of instant sorption (-)
Kd = Solid adsorption coefficient (cm3/g)
Cs,2 = Conc. in kinetic ads. domain (µmol/cm3)
z = Vertical resolution (cm)
v = Interstitial porewater velocity (cm/s)
D = Dispersion coefficient (cm2/s)

• Linear adsorption at solid –water 
and air–water interfaces

(Retardation) (PFAS concentration in kinetic solid-phase domain)



Key Assumptions: 1-d Analytical Model

1. One-dimensional, steady-state water 
infiltration;

2. Homogenous, uniformly unsaturated vadose 
zone;

3. Linear sorption at solid–water and air–water 
interfaces;

• two-domain approach to represent kinetic solid-phase 
adsorption

• air–water interfacial adsorption is considered 
instantaneous

4. Partitioning to vapor/air phase neglected;

5. Production of PFAS due to precursor 
transformation not considered
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Key Inputs: 1-d Model

• Site-specific soil and hydraulic properties
• Soil moisture, soil characteristic parameters, infiltration, conductivity, air-water interfacial area

• PFAS specific properties
• Molecular weight, sorption coefficients at air-water and solid-water interfaces, surface tension 

parameters

• Initial soil or aqueous PFAS conditions 

• Any number of depth-discrete data points can be used
• Single point at surface;

• Multiple concentrations at depth forming a complete soil profile

• Model can interpolate incomplete soil concentration profiles between discrete data points



Vadose Zone Mathematical Model

Derives a Vadose-Zone Attenuation Factor (AFvz)  =
Max 𝐶

𝑎𝑞𝑢𝑒𝑜𝑢𝑠
 of PFAS in vadose zone
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Groundwater Dilution Model

USEPA standard Dilution Factor (DF) model (1996)

• Dilutes PFAS leachate passed on from vadose-zone model

• Homogenous, isotropic, unconfined aquifer

• Facilitated transport not considered

• Receptor point is adjacent to source zone

δgw  = Mixing zone depth (cm)
αv = Vert. dispersivity  (cm)
W  = Lateral width of site (cm)
bsat = Saturated thickness (cm)
If  = Net infiltration (cm/yr)
Ugw = GW Darcy velocity (cm/yr)
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Forward mode – characterization of groundwater contamination risk 

Integrated Framework

Forward Mode

• Determines groundwater PFAS concentrations in time

• Derives site-specific Vadose-Zone Attenuation Factor

Inverse Modes

• Derive site-specific SSLs

Extracting the AFVZ from the forward mode 
allows for further simplification of the solution.

Inverse mode (approach 2) 

vadose zone attenuation factor 

Acceptable GW concentration

Vadose zone (VZ) 

leachate concentration

Dilution 
Factor

Vadose-zone
Attenuation 

Factor

Conversion from porewater 

concentration to soil 

concentration to derive SSL



Excel-based Modeling Framework

• Excel tool has a clear, and 
simple user-interface.

• Users input data or can 
extract soil characteristics 
from Hydrus soil database

• Tool has assistive 
estimation ability for 
certain parameters.



Module 1 – Sensitivity Analysis

• This module allows users to 
perturb individual or multiple 
parameters.

• Three simulations are run 
side-by-side.

• Direct analysis of parameter 
sensitivity in SSLs and PFAS 
groundwater concentrations.

Results
Lower Base Upper

Soil Screening Level 

(PFAS-Leach)
SSL µg/kg 3.39 2.34 1.78

30% variation in solid–phase sorption coefficient Kd

PFHxS
Sandy Clay



Module 2 – Monte Carlo Simulation

• Monte Carlo Simulation 
accounts for total 
uncertainty in parameter 
space

• Selected parameters can be 
sampled from a Normal 
distribution

• Percentile ranges of 
groundwater concentrations 
and SSLs are displayed

max

min

PFPeA – Sandy Clay



Summary – 1-d Model

• Analytical model is fast and computationally efficient

– Monte-Carlo simulation

– Facilitates sensitivity analysis

• Simplifying assumptions limit the effective use cases of the 1-d model
– Not applicable at site with significant heterogeneity or preferential flow

• Ensemble approaches can be used to approximate these cases

• Excel-based modeling framework is user friendly, and straight-forward

• Can derive site-specific PFAS concentrations in groundwater

– Leachate concentrations

– Soil concentration profiles

– Temporal and spatial PFAS distribution/mass transport



PFAS Transport 2D and 3D models

• Hydrus

– Air-water interfacial sorption 
(limited options)

– Rate-limited adsorption

• MODFLOW-USG
– Air-water interfacial sorption 

– No rate-limited sorption

• PFLOTRAN



Hydrus 3D Example – PFAS from Landfill Leachate

• PFAS in landfill leachate released 
over a 24-hour period

• Simulation time of 200 hours

• Air-water interfacial sorption only

• Pumping well downgradient

t = 0 days

t = 8 days



Hydrus 3D Example – PFAS from Landfill Leachate

t = 0 days
t = 8 days

Air-water interfacial area follows same pattern as moisture content 



Hydrus 3D Example – PFAS from Landfill Leachate

t = 5 hours



Hydrus 3D Example – PFAS from Landfill Leachate

t = 10 hours



Hydrus 3D Example – PFAS from Landfill Leachate

t = 20 hours



Hydrus 3D Example – PFAS from Landfill Leachate

t = 30 hours

AWIA



MODFLOW-USG PFAS Option

• USG-Transport version 2.3.0 (Panday 2024)

• Unsaturated zone flow and transport

– Richard’s equation
• Brooks-Corey

• van Genuchten

– PFAS transport

• Most of the options available in 
Groundwater Vistas version 9



PFAS Transport

• AWIA-saturation relationship (iarea_fn)

– linear and non-linear Sw

– tabular input

• Air-water partitioning coefficient (ikawi_fn)
– Langmuir isotherm

– tabular input



Summary – 2D/3D Numerical Models

• Represent soil and aquifer heterogeneity

• Recharge and infiltration dynamics, pumping 
and regional flow 

• Soil hydraulic and PFAS chemical parameters

• Larger computational effort, limited 
visualization options, numerical solution 
challenges

• 1-D analytical models can complement 
complex 2D/3D models 

– most sensitive parameters

– which PFAS is most mobile
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What do we need for a PFAS model?

• Model objective(s)

• Conceptual site model & data

• Vadose zone flow parameters

• Groundwater flow parameters

• Recharge

• Estimated soil surface area or air-
water interfacial area

• PFAS-specific sorption coefficients
Groundwater flow

PFAS 

transport

in vadose 

zone

PFAS-contaminated 

site

2-d

1-d



Knowledge Gaps

• Field-scale air-water interfacial area

• Impact of co-contaminants

• Transport in thin water films

• Competitive sorption

• Representativeness of laboratory-scale 
data

• Many more (Guo & Brusseau 2024, 
SERDP-ESTCP PFAS Report, 2022)



Ongoing Research
• EPA’s “Whole-of-Agency” approach – Research + 

Restrict + Remediate 

– Vapor intrusion

– Analytical methods

– Field measurement standards

– Toxicity assessments

• Department of Defense’s SERDP-ESTCP

– Complete destruction technologies

– In-situ treatment/immobilization methods

– In-situ monitoring tools/technologies

– Modeling & decision support tools 

– Background PFAS www.epa.gov/pfas

http://www.epa.gov/pfas


https://serdp-estcp.mil/

https://serdp-estcp.mil/


SERDP-ESTCP projects at H&A
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Title Collaborators Funding Source

Optimized numerical models using environmental sequence stratigraphy
Aquaveo, Seequent ESTCP

Demonstration of PFAS destruction in a concentrate waste UC Riverside ESTCP

Demonstration of a treatment train for PFAS removal and destruction in groundwater Allonnia AFCEC

Development of in situ microcosm for PFAS precursor assessment UC Riverside SERDP

Transformation of PFAS precursor in soil and groundwater UC Riverside, NCSU SERDP

A novel in-situ subsurface PFAS destruction strategy that uses ligand-coordinated

zero-valent metals at ambient conditions

Univ. Texas at Austin, UC 
Riverside

SERDP

Lab and field validation of an acetylene sampler for quantifying abiotic transformation of chlorinated 

solvents

UM Lowell SERDP

Enhanced in situ aerobic cometabolic biodegradation of chlorinated solvents, 1,4-dioxane, and other 

recalcitrant compounds in deep, large, dilute plumes

North Carolina State 
University

ESTCP

Development of a reliable method for performing compound-specific isotope analysis on low levels 

of 1,4-dioxane in groundwater
Univ. Waterloo SERDP

New laser induced fluorescence tool for high-resolution real-time mapping of chlorinated solvent 

DNAPL
Dakota Technologies ESTCP

AFCEC BAA = Air Force Civil Engineer Center Broad Agency Announcement

ESTCP = Environmental Security Technology Certification Program

SERDP = Strategic Environmental Research and Development Program
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