Pseudo-Hydrologic Forecast for Climate Change and Other Alternative Hydrology

Presenters Mohammad Hasan (DWR) Kunxuan Wang (USBR)

Collaborators

Hongbing Yin, Jianzhong Wang, Hao Xie, Idy Lui, James Polsinelli, and ZhiQiang Richard Chen

CWEMF Annual Meeting

September 24, 2024

Motivation of Developing Hydroforecast DLL

SWP contractors need an analysis tool to evaluate their allocation procedures for the water allocations and its associated risks in response to various September reservoir carry-over storage rules, hydrologic uncertainties, and timing of allocation decisions.

[Hongbing Yin]

Background

- □ Monthly Unimpaired Flow at key reservoirs and streams in the Central Valley significantly influences SWP and CVP allocations, Delta operations, and water year type classifications through Sacramento and San Joaquin Valley indices.
- □ State water contractors need to evaluate the system response (water allocation) to different reservoir carryover storages and different risk levels of reservoir inflows.
- □ CalSim 3 a water resources planning model requires forecasted flow at various exceedance levels to simulate forecast-based operations of SWP, CVP, and water infrastructure in the Central Valley and Sacramento-San Joaquin Delta.
- DWR Bulletin 120 (B120) started publishing the median monthly flow forecasts for the rest of the water year in the beginning of February, March, April, and May from 1969 and gradually expanded the forecasts into other exceedance levels.

DWR B120 Forecast Development

- Monthly flow forecasted started from 1969 –
- Hybrid forecast method
 - Statistical + Engineering judgement and manual adjustment
- Data used in the forecast
 - Precipitation, snowpack, historical unimpaired flow records, and other basin information

BDO Hydroforecast Development

- Use the data that are available for **the entire simulation period** (WY 1921-current).
- Statistical method only.
- Exceedance Levels: 50%, 75%, 90%, and 99%.

BDO Hydroforecast DLL

- Forecast validation was made against the historical unimpaired flows as well as with the B120 forecast.
- Forecast made for the **entire simulation period** starting from WY 1922.
- Automated monthly forecasts on the fly for sequential model run and position analysis.
- May be reasonably applicable to most **climate change scenarios**.
- Depends on the historical condition and data. Needs recalibration if there is any change in the input historical dataset.

Locations and Unimpaired Flow Data Source

CS3 Rim Inflow

CEDEC

Sacramento Valley

- 1. Feather River inflow to Oroville
- 2. American River Inflow to Folsom
- 3. Yuba River at Smartville
- 4. Sacramento River Inflow to Shasta
- 5. Sacramento River at Bend Bridge___
- 6. Unimpaired inflow to Trinity Lake ⁻
- 7. Unimpaired inflow to Whiskeytown

San Joaquin Valley

- 1. Stanislaus River below Goodwin
- 2. Tuolumne River below La Grange
- 3. Merced River below Merced Falls
- 4. San Joaquin River inflow to Millerton

CEDEC

Historical Data Used in Hydroforecast DLL

Monthly unimpaired flow data from CDEC for all the locations except Trinity and Whiskeytown Lake.

□ Basin Areal Averaged Precipitation - PRISM.

Temperature - PRISM.

□ Vapor Pressure Deficit - PRISM.

General Methodology

Development of Pseudo Forecast for Alternative Hydrologic Conditions

Forecasted seasonal $flows_{alt hydrl, p (Jan-Sep)} = Seasonal flow_{alt hydrl (Jan - Sep)} *$ Forecasted seasonal flows_{hist hydrl, p (Jan - Sep)}/Historical seasonal flow_(Jan - Sep)

Forecasted monthly flow_{alt hydrl, p (Jan)} = Forecasted seasonal flows_{alt hydrl, p (Jan - Sep)} * Monthly flow distribution coefficient_{alt hydrl (Jan)}

Evaluation of Results

- Compare forecasted inflow with "actual" inflows
 - Forecast: Hydroforecast DLL output
 - Actual: unimpared inflows used for Calsim input
- Unimpared inflows
 - Historical data
 - Observed reservoir storage, stream gauges
 - Alternative hydrology
 - Developed based on historical data
 - 2022 MED from Reclamation's LTO
 - projected inflows under climate change, 2022±15

12

Shasta Historical

- Estimate of water supply
 - Total inflow from Mar/Apr/May Sep

	Nominal Exc	Exceedance
Mar	90%	90.0%
Apr	75%	71.0%
May	50%	46.0%

• More conservative estimates earlier in the year

Shasta 2022MED

- Estimate of water supply
 - Total inflow from Mar/Apr/May Sep
- "Actual" inflow climate perturbed inflow

	Nominal Exc	Exceedance
Mar	90%	90.0%
Apr	75%	71.0%
May	50%	46.0%

• Performance of forecasts for an alternative hydrology is similar to historical

Folsom 2022MED

 Performance of forecasts for an alternative hydrology is similar to that of the historical

	Nominal Exc	Exceedance
Mar	90%	85.0%
Apr	75%	68.0%
May	50%	50.0%

Oroville 2022MED

Median inflow forecasts

	Nominal Exc	Exceedance
Mar	50%	52.0%
Apr	50%	50.0%
May	50%	52.0%

Trinity 2022MED

Median inflow forecasts

	Nominal Exc	Exceedance
Mar	50%	43.0%
Apr	50%	46.0%
May	50%	41.0%

Sac River Index 2022MED

- Weighted flow from 4 rivers: Sac, Feather, Yuba, American.
- Determines water year type (WYT) on Sac River
 - Reservoir and Delta operations

Historical DLL and B120 WYT Classification

- Compare WYTs for 1970-2021
 - Actual
 - Historical data reconstructed WYT
 - Forecasts
 - B120
 - Hydroforecast DLL (MSO)
- Similar distribution of mismatched years.
- Decreasing uncertainty with time.
- One more mismatched year from Feb-Apr, less mismatched years by May.

		Sacramento Valley, WY 1970-2021		
		Number of	Number of	Number of
		years that	years that	years that
		computed	computed	computed
		WYT differ	WYT is drier	WYT is wetter
Forecast		from the	than the	than the
Date	Source	Reconstructed	Reconstructed	Reconstructed
1-Feb	B120	22	12	10
	MSO	23	12	11
1-Mar	B120	22	12	10
	MSO	23	11	12
1-Apr	B120	12	4	8
	MSO	13	4	9
1-May	B120	7	1	6
	MSO	3	1	2

Equal or less mismatch years

Conclusions

- Hydroforecast DLL forecasts monthly inflows at major river locations for forecast-based allocations and operations in CalSim3
- Provides reasonable forecasts for historical and alternative hydrology such as Climate Change scenarios.
- Assuming the watershed will behave the same as historical condition under future climate change condition.

Contacts and Questions

Mohammad Hasan

mohammad.hasan@water.ca.gov

Modeling Support Office

CA Department of Water Resources

Kunxuan Wang

kwang@usbr.gov

Bay Delta Office, Modeling Division

US Bureau of Reclamation

21