

Modified OMR

Presented by Cameron Koizumi

Real-Time Adjustments 2019 BiOp vs. 2021 LTO PA

2019 BiOp Real-Time Adjustments:

- Some seasonal actions based on exceedance of fish salvage thresholds
- Some undefined actions based on real-time information and discussions about current conditions

2021 LTO PA Real-Time Adjustments:

- Explicit triggers based on daily thresholds
- Explicit length of days applied to each action
- Reassessed weekly to continue the actions

Overview of LTO PA Modeling Assumptions

[Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct
First Flush & onset of OMR mgt				OMR > -2000	cfs for 14 day	s when SRR >	20,000 cfs					
					OMR > -2000	cfs for 14 day	s when SRR >	20,000 cfs				
Turbidity Bridge					OMR > -2000	cfs for 5 days	when SRR > 2	20,000 cfs				
Turbidity Bridge					OMR > -3500	cfs for 10 day	/s when SRR >	20,000 cfs				
High flow offramp					VNS > 10,000) cfs						
Adult Longfin salvage threshold					OMR > -3500	based on his	torical % of m	onth				
Lanval Dalta Smalt								Accuments	he covered by	v other action		
								Assumed to				
Larval Delta Smelt (Secchi Depth)									OIVIR > - 3500	based on his	torical % of m	ionth
High flow offramp									Rio Vista > 55	5,000 cfs or VI	NS > 8,000 cfs	
Lanval Lanafin Catch at 200 8, 212									OMD > 2500	of a horse di an	historical 0/ c	fmonth
Larval Longin Catch at 809 & 812									UIVIK > - 3500	cis based on		n month
High flow offramp									Rio Vista > 5	5,000 cfs or VI	NS > 8,000 cfs	
Single-Year loss (WR & SH)									OMR > - 3500	cfs based on	historical % c	of month
Annual Threshold (WR)									OMR > - 3500	cfs based on	historical % c	of month
Weekly loss (WR)									OMR > - 3500	cfs based on	historical % c	of month
Weekly loss (SH)									OMR > - 3500	cfs based on	historical % c	of month
Storm-Flex					OMR > -6250	cfs for 6 days	when Delta i	n excess, X2	< 81 km, SRI <	20,000 cfs, ar	nd QWest > +	1,000 cfs

PA/PP

Both

2020ROD/ITP

Modeling Challenges

- OMR actions happen as realtime adjustments
- Fish presence, salvage, or water temperature are often triggers for OMR actions
- Limited historical dataset
 - 2009 BiOps to 2019 BiOps
 - 2019 BiOps to 2021 LTO
- Holes in the historical dataset

Development Process

Steps to Implementing Each Action:

- 1. Attempt to correlate triggers to flow for dynamic implementation
- 2. If no correlation is found, look at the historical timing
- 3. As a last resort, use categorical averages of the historical record

Correlated to Flow	Historical Timing	Historical Triggers
First Flush	Start of OMR Management	Delta Smelt Larval and Juvenile Protection
Onset of OMR Management	Turbidity Bridge Offramp	Longfin Smelt Adult Entrainment Protection
Turbidity Bridge	End of OMR Management	Longfin Smelt Larval and Juvenile Protection
High-flow Offramps		Winter-Run Chinook Salmon
Storm-Flex		Salmonid Loss Thresholds

Correlation to Flow Example

First Flush Triggers:

- Running 3-day average of the daily flows at Freeport is greater than 25,000 cfs, AND
- Running 3-day average of the daily turbidity at Freeport is 50 NTU or greater

Historical Timing Example

End of OMR Management Triggers:

- For Delta Smelt and Longfin Smelt:
 - 3 consecutive days of water temperature at Clifton Court Forebay (CLC) at 77.0°F (25°C) or higher, OR
 - June 30th, whichever comes first
- For Salmonids:
 - Daily mean water temperature at Mossdale (MSD) exceeds 72.0°F (22.2°C) for 7 non-consecutive days in June, AND
 - Daily mean water temperature at Prisoner's Point (PPT) exceeds 72.0°F (22.2°C) for 7 non-consecutive days in June

	CLC	MSD	PPT
2010	30-Jun	-	-
2011	30-Jun	30-Jun	-
2012	30-Jun	30-Jun	-
2013	30-Jun	30-Jun	-
2014	9-Jun	30-Jun	-
2015	11-Jun	30-Jun	-
2016	5-Jun	30-Jun	-
2017	23-Jun	30-Jun	-
2018	25-Jun	30-Jun	-
2019	30-Jun	30-Jun	-
2020	26-Jun	30-Jun	2-Jun
2021	21-Jun	30-Jun	7-Jun
2022	27-Jun	30-Jun	22-Jun

Historical Triggers Example

Winter-Run Chinook Salmon Weekly Distributed Loss Threshold:

- Trigger action when the weekly distributed loss threshold is exceeded on any single day by the 7-day rolling sum
- Operate to 7-day average OMR index no more negative than -3,500 cfs for 7 days

WYT	Jan Avg	Feb Avg	Mar Avg	Apr Avg	May Avg	Jun Avg
С	0%	0%	0%	6%	0%	0%
D	25%	0%	23%	25%	0%	0%
BN	5%	0%	60%	13%	0%	0%
AN	8%	0%	35%	15%	0%	0%
W	0%	0%	10%	17%	0%	0%

Historical Triggers – Combined Coverage

- Each action covered calls for operating to an OMR index > -3,500 cfs
- High-Flow Off-Ramp dynamically removes the coverage of the Larval and Juvenile Smelt actions

Combined Coverage

WYT	Jan Avg	Feb Avg	Mar Avg	Apr Avg	May Avg	Jun Avg
С	25%	25%	45%	38%	13%	10%
D	63%	50%	73%	75%	50%	40%
BN	15%	45%	100%	75%	75%	35%
AN	17%	75%	95%	67%	54%	34%
W	0%	0%	90%	58%	33%	33%

Combined Coverage with High-Flow Off-Ramp

WYT	Jan Avg	Feb Avg	Mar Avg	Apr Avg	May Avg	Jun Avg
С	0%	0%	0%	6%	0%	0%
D	25%	8%	43%	63%	25%	0%
BN	0%	30%	100%	38%	19%	10%
AN	17%	25%	65%	27%	9%	5%
W	0%	0%	30%	17%	0%	0%

