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Pilot Project Objective

Develop and test a methodology for
creating fast surrogate models for use in
CalSIM representing the relationship of
Delta salinity to hydrology and
operations under management
alternatives intended to mitigate
impacts of extended droughts

Modeling Workflow

Define Scenario

Simulate Key Period with Multi-D
model(s)

Analyze Multi-D model results to
derive change in transport

Develop surrogate model for
scenario salinity base

Run CALSIM with updated ANN
including extended drought period

Run Multi-D model(s) using CALSIM
results

Summarize effectiveness of the
scenario to reduce water cost

Changes in geometry, operation, or
boundary conditions

Limit computationally expensive model
runs by carefully selecting the most
useful simulation periods

Evaluate change in transport between
the base and scenario condition

Develop an ANN, or other surrogate
model, to estimate salinity for scenario

Use CalSIM to identify the change in
Delta inflow and operations resulted
from the updated ANN

Perform “round-trip” simulation to verify
by driving the Multi-D model with the
updated CalSIM results

Check that the new CalSIM operation base
on the updated ANN meets requirements
and prepare key outputs and metrics from
the Multi-D model(s)




* Causes of Salinity Intrusion
* Primary mixing and transport mechanisms
* What happens during drought and sea level rise?
* Managing Salt Accumulation over the Dry Season
# Salinity Impact vs Operational Response
* Detailed models and CalSim surrogates
* Broadening/shortening training data
* "Round trip" back to Delta impact?

* Prototype Scenarios and Modeling Example



Delta Time Series Data
Observed versus Computed.
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Delta Time Series Data
What can you see in the wiggly lines?
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Tidal and Net Flow

Demonstration of increasing river inflows
bringing net Delta outflow from 2,000 to
100,000 cfs with typical summer exports (not
an historical condition)

* Tidal flows dominate the Western Delta

* Net transport of fresh water from north to
south typical of summer and fall operation

* As Sacramento Inflow increases, more of the
North Delta becomes riverine

* As San Joaquin flow increases the net flows
change from south to north in the southern
Delta
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Animation created by Resource Management Associates, using RMA Model results




Excursion and Mixing

Groups of Particles released at two locations on the lower Sacramento River near the center of the

channel

Tidal Excursionis on the order of 6 to 9
miles(!) in this area of the Delta

* The water velocity varies vertically and
laterally in a channel

* Turbulent mixing causes a group of
particles released at one location
experience slightly different velocities
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Animation created by Resource Management Associates, using RMA Model results



Excursion and Mixing

Particles released hourly at two cross sections of the lower Sacramento River and stopping after

traveling for one tidal cycle

The distribution of particles after
traveling for one tidal cycle
(~24.75 hours) illustrates the
impact of tidal mixing, one of the
key processes that brings ocean
salinity into the Delta

Animation created by Resource Management Associates, using RMA Model results



Salinity

Mixing in the Central Delta during a typical low flow period

*  Fresh water moves from north to south

drawn by south Delta exports and in-Delta
demand

* Sacramento River water moves through
Threemile Slough to the San Joaquin on
flood tide

 Tidal flows move higher salinity water from
the lower San Joaquin to False River where it
is drawn into Franks Tract

Animation created by DWR Delta Modeling Section, using Bay-Delta SCHISM Model results



Sacramento River water drawn into the
south Delta by exports

San Joaquin River inflow typically higher
in salt than other tributary inflows

Salt from the ocean boundary moves
slowly eastward over the summer and
fall period

10

Salinity

Tidally averaged Delta salinity distribution (as Electrical Conductivity), 2002 Historic

Conditions

EC
{(umhos/cm)

Animation created by Resource Management Associates, using RMA Model results



Dispersion at Breaches

Breach

Collinsville

Van Sickle Island Breach Expanded
Result from Bay-Delta SCHISM "

* Asynchronous:
+ Tidal turnaround
* Concentration

+ Cumulative
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Sea Level Change: Density-Driven Mixing
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Sea Level Change: Horizontal Transport
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Operational Response

and Salinity Impact vs Water Cost




How will altered Delta
salinity-flow affect water
management?

Redding

Francisco

Los Angeles

S.an Diego

1

How will operational
response change the
benefits of actions?

amento

300. 475. 650. 825. 1000.




Sea Level Rise: Impact vs Water Cost

Impact: Inflows/Exports Held Constant
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ﬁ)perations Models
(e.g. CalSim)

Compliance

\

Artificial Neural Network

Surrogate

/ Metrics: \

Flow, Salinity,
Residence Time

Training

Detailed
Models

(e.g.
SCHISM,
N RMA2D)

Validation
and
detail



Cluster Analysis for Representative Years

Artificial Neural Network
Surrogate

Detailed "“"
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Clustergram of the PCA-weighted Mean of
the clusters k-mean clusters vs number of clusters (k)
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Variations At Multiple Scales
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ﬁ)perations Models
(e.g. CalSim)

Compliance

L

ANN

Surrogate

Artificial Neural Network

/ Metrics: \

Training

/

Detailed
Models

(e.g.
SCHISM,
RMA2D)

o

Sacrament

o River

Flow, Salinity,
Residence Time

Validation
and
detail



Surrogates for Alternate Cases:
Transfer/Residual Modeling
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Questions?




Contact Information

John F. DeGeorge, Ph.D., P.E. Eli Ateljevich, Ph.D., P.E.

Resource Management Associates, Inc. California Department of Water Resources
4171 Suisun Valley Road, Suite J 1516 Ninth St, 2-207

Fairfield, CA 94534 Sacramento, CA 95814

(707) 864-2950 (916) 902-6984

jfdegeorge(@rmanet.com Eli.Ateljevich@water.ca.gov

www.rmanet.com
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