Recent Technological Advances in ANN Regression Modeling

John Rath

TT Lafayette, CA

September 23, 2024

X2 Modeling is an Economically Consequential Problem

- Wide variety of approaches over the years:
 - Simple empirical/algebraic/autoregressive equations
 - More complex empirical models (e.g. ANNs), beginning in ~2000
 - 1D physics-based numerical modelling of the estuary
 - Fully resolved 3D models
- Various tradeoffs among competing model approaches:
 - Accuracy / predictive power
 - Runtime (100-year runs take too long in 3D models)
 - Ease of understanding by public and regulators
- In 2015-16, we developed a hybrid mechanistic-feed-forward ANN application for this problem, published as Rath et al. 2017¹
- Focus of presentation today: Have technologies evolved in the past 7 years to enhance the development of such ML tools?

2015-16 ANN Modeling Effort ¹	2024 ANNs
MATLAB neural network toolbox was initially used; limited flexibility and didn't fully meet project needs	Entirely implemented in open source 3 rd party libraries (Python, pytorch, raytune)
Programmed much of the math for a customized model from scratch (Stan MCMC language) over the course of multiple weeks	Reproduced results of comparable quality using pre-built pytorch functions
Ad hoc adjustment of antecedent flow moving averages, network size	More refined tools (e.g. raytune) for automated model hyperparameter optimization
Access to slower CPU based training; any given experiment took longer	GPU training: faster training time, easier iteration
	~5-10X improvement in implementation time
	Note: More complex model is even more of a black box to explain results

Collinsville

Observed — 2017 ANN — 2024 ANN — DSG

