

Tracer-Based Phytoplankton Modeling

Hugo B. Fischer Award Acceptance Presentation

Edward Gross

September 23, 2024

Thank You Mentors!

- Jeffrey Koseff, Stephen Monismith
- Ralph Cheng, Jon Burau
- Vincenzo Casulli, Guus Stelling
- Wim Kimmerer, John DeGeorge, Richard Rachiele

Thank You RMA Team and Other Colleagues!

- Rusty Holleman Modeling guidance and python scripts
- Richard Rachiele, Stacie Grinbergs Modeling approach and inputs
- Steve Andrews UnTRIM interface and application
- Benjamin Saenz Python scripts and model inputs
- John DeGeorge Business development and project management
- Scott Burdick Hydrodynamic grid and model setup
- Michael MacWilliams, David Ralston, Gerard Ketefian, Nick Nidzieko

Questions for Suisun Marsh Phytoplankton Modeling

- Which regions of Suisun Marsh are most productive?
- What are the mortality rates?
 - Clam grazing
 - Zooplankton grazing or other mortality

Article

Using Age Tracers to Estimate Ecological Rates in a Phytoplankton Model

Edward Gross ^{1,2,*}, Rusty Holleman ³, Wim Kimmerer ⁴, Sophie Munger ³, Scott Burdick ¹ and John Durand ^{3,5}

Ecological Modeling Approaches

Option 1: Box model

Option 2: Coupled hydrodynamics and ecology

- Fast, simple
- Ignore or drastically simplify transport
- Transport affects transformation
- Slow

Option 3: Lagrangian model utilizing water age tracers

A box model where "the box is moved around by the hydrodynamics."

Example Snapshots of Predicted Tracer Distributions

Resource Management Associates, Inc.

Water Age Tracer-Based Phytoplankton Model

- Light limited production equations from Cloern (2007)
- Losses (unknown parameters in green)
 - $\mu_{loss} = PM + ZG + \frac{CG}{H}$
 - PM is phytoplankton mortality rate (d⁻¹)
 - ZG is microzooplankton grazing rate (d⁻¹)
 - $ZG = max(0, -0.3 + 0.93 * \mu_{growth})$ (Kimmerer and Thompson 2014)
 - CG is clam grazing rate (m d⁻¹)
- Analytical solution for chlorophyll concentration (Wang et al. 2019)

•
$$P(a) = \frac{P_{in}(t-a)e^{\overline{\mu}net}a}{1+k_pP_{in}(t-a)(1-e^{\overline{\mu}net}a)}$$

٠

Validation

High-speed mapping data from USGS: Bergamaschi et al. 2021 https://www.usgs.gov/data/spatialassessmentnutrientsand-water-quality-constituentssuisun-marsh-salinity-control-gate

Conclusions

- The strength of this type modeling approach is to <u>quickly</u>:
 - Test model formulations
 - Fit unknown rates or other parameters to data
 - Gain conceptual understanding
- Derived rates can be used in a more complex ecological model
- Difficulties to applying at larger spatial and temporal scales
 - Spatial and temporal variability in parameters
 - Multiple sources of water

Technical Note

Estimating Effective Light Exposure by Property-Tracking Tracers

Edward Gross ^{1,2,*}, Rusty Holleman ¹, Eric Deleersnijder ³ and Eric J. M. Delhez ⁴

Thank you to CWEMF and Funders!

Funding:

- DSP 18212 (SFSU: Wim Kimmerer)
- CDFW P1696010 (UC Davis: John Durand) and Q1996064 (UC Davis: Rusty Holleman)

Where to find me:

- ed@rmanet.com
- LinkedIn: https://www.linkedin.com/in/edward-gross-0914b94/
- ResearchGate: <u>https://www.researchgate.net/profile/Edward-Gross</u>