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Does the sequence of wet and dry years
matter?

If the hydrologic record can (generally) be represented as a sequence of independent year
types — we can think of sequences like the following:

Example: 10 years might have 4 dry + 4 “normal” + 2 wet years (could be inflows, reservoir
storage, deliveries, some other hydrologically-driven outcome)
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Might expect a very similar outcome for a system with little “memory” — Storage or Deliver
significant multi-year autocorrelation in hydroclimate signal, storage capacity & Y

much greater than annual runoff

Q% NOAA

). FISHERIES

o
P

£ ATMOS,
e v,
4
ArMENT O

c
)
%,



Winter-run Egg-Fry Survival at RBDD

Winter-run

Chinook salmon .
have a ~3-year life
cycle
Wetter years tend to lead I ' i I I I
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Does the sequence of wet and dry years matter?
Might it matter more for fish with a 3-year life cycle?

If the hydroIoElc record can (Fenerall ) be represented as a sequence of independent year types
S

— we can think of sequences like the tollowing:

Example: 10 years might have 4 dry + 4 “normal” + 2 wet years (could be inflows, reservoir

storage, deliveries, some other hydrologically-driven outcome)
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Hypothesis: The
timing and order of
wet (population
recovery) and dry (low
survival) years has an
important effect on
projections of winter-
run Chinook salmon
populations



How do we commonly represent hydrologic sequences and
variability in Central Valley planning models?

—— Historical
—— 2040MED Adjusted

* Planning analysis uses the historical
hydrology trace 1921 - 2021

* Hydrologic change applied as
perturbations to monthly pattern, but
keeping same annual sequence

____________________________________

Annual Shasta Inflow (TAF)
3 8
o o
o o
d———
e
_—————
T
;)—

|||||||||||||||||||||||||||||||||||||||||||

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
Year

800 1

What about other sequences .

£ 700

(TAF

of droughts? Different
durations and severities?

300
UG SHNTA CRUZ
1 T T T T T T T T I T T T
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep
Month

:
mr

gV FISHERIES



Objective

* Better understand how the sequence and characteristics of dry and
wet years affects winter-run Chinook salmon population projections

e Additional motivation comes from Governor’s Executive Order N-10-
21:

“.develop strategies to protect communities and fish and wildlife in the
event of drought lasting at least six years..”

* Funding support provided by California Department of Fish and
Wildlife to help address questions that arise from this Executive Order
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Analytical Framework: CalSim3 and the
Winter-Run Lifecycle Model (WRLCM)

Drought
Characterization

* Phase I: Drought Synthesis & Assessment

* Characterize historical droughts Synthetic
* Generate drought sequences SDfought
. . . equences
* Create corresponding CalSim3 input datasets g Water
: : Baseline CalSim . Supply
* Run Baseline CalSim for each sequence - Outcomes

Temperature,
Habitat,

* Run “downstream” component models Survival Models
* Run WRLCM
* Evaluate baseline salmon response to drought

Population
Outcomes
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The CalSim3 planning model
translates hydrologic inputs to
managed water resource outcomes
across the Central Valley

* Model used by state and federal
government to represent long-term
operations of facilities

e Current operations provide a useful
baseline for comparison

* Monthly time step, logic defining
conveyance network, demands,
regulations, and priorities in a linear
programming framework

e Results feed into other models and
WRLCM for population analysis
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across Winter Run salmon life stages

AP

>
‘ FLOODPLAIN
| Stage: Rearing, Smolt

LEnv Characteristics: Flow‘,rD,e\Elrl. Velocity

‘ LOWER MAINSTEM
| Stage: Rearing, Smolt
Env. Characteristics: Flow, Depth, Velocity

P

B

" DELTA
Stage: Rearing, Smolt
{ Env. Characteristics: Bank
! Characteristics,
Channel Type,
Levees,

 Spatial structure to evaluate conditions
for different life stages
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relies on intermediate “downstream” B
models to translate managed flows
into habitat and survival
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et al. (2017, January 6). Model Description for the Sacramento River
Winter-run Chinook Salmon Life Cycle Model. National Marine Fisheries



CalSim-WRLCM Process: “Downstream” Models

* Upper Sacramento River Water temperature
 Determine temperature effects on early life stage

survival
* Models: CE-QUAL-W2 & RAFT, Rapid Reservoir- e
River Assessment MOdeIS ’ Plan View t; Longitudinal Profile Vertical I;’roﬁle
Shasta Reservoir View Pit River View Pit River

 River, Delta, & Bay habitat
* Determine capacity for outmigrating juveniles

e Delta Survival
* DSM2 hydro -> ePTM

e Computational bottleneck:

* Concurrent effort to speed up ePTM through emulation,
simplified simulation
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Analytical Framework: CalSim3 and the
Winter-Run Lifecycle Model (WRLCM)

. h
* Phase I: Drought Synthesis & Assessment Charastar e
* Characterize historical droughts Synthetic
* Generate drought sequences Drought
. i ] Sequences
* Create corresponding CalSim3 input datasets g Water
: : Baseline CalSim . Supply
* Run Baseline CalSim for each sequence - Outcomes

Temperature,
Habitat,

* Run “downstream” component models Survival Models
* Run WRLCM
* Evaluate baseline salmon response to drought

Population
Outcomes
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Drought Characterization &
Synthesis: Data

e Use 8-river annual flow as index for
Central Valley hydrology

- Sacramento_at BendBridge

* Gage record
* Natural flow at 8 gage locations
* ~100 years

* Paleohydrology record

* Estimated from tree rings — growth
correlated with precipitation and runoff
* ~1000 years

* May be less sensitive to extreme wet
conditions

UG SANTA GRUL



Method Selection

* Reviewed methods in literature,

considering criteria:
» Appropriate for streamflow
* Suitable for multi-year sequences

* Generate sequence with specified
properties

* Quantifiable probabilities or risks

e Can be based on observed or projected
hydrology data

-

Drought Characterization & Synthesis:

Run sum (Deficit)

1. Drought with the highest severity;
2. Drought with the longest duration;
3.Drought with the highest intensity
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Run intensity

Fig. 1. Drought characteristics using the run theory for a given threshold level.

Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of
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https://doi.org/10.1016/j.jhydrol.2010.07.012

Drought Characterization & Synthesis: Applying
Method

e Assign a drought “threshold”

+ve Run

e Threshold, X,= MeanQ — 0.5*StdDev x | Run sum (Deici
* Process time series to quantify: ﬂ | r‘ﬂ L e

» Drought incidence (Q; < X,) T EG ’

* Drought duration (# contiguous years Q; < X,) . _>_ V\ .

* Deficit (X, — 0Q;) e

* Drought severity (2.(Xo — @Q;)) S Dot it s ot

3.Drought with the highest intensity

 Same measures for wet intervals between FE T DIOUS CHTSCErics i he run oy (o 3 e treshold el

drought (“pluvials”)
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A note on record length & distribution fitting:

* Problem: Very small sample size I |
for long duration (rare) droughts IR IR
in gage and paleo records — qﬂ"';. ,Pl"” l l"*lif' ;Il"lll'”'*wl;* il l'Tl‘ sl
difficulty fitting deficit & severity 1R I :JT Fr
distributions (and uncertainty in L | |
duration distributions) o

* Solution: expand existing records .
with a hidden Markov model

(HMM), improve sample size
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Fit distributions to drought duration &

severity data

0.40

* Drought & pluvial
durations: Geometric
distribution

Frequency

* Individual deficits
(surpluses) during a
drought (pluvial) of length
1 —9 years: Beta
distribution
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Analytical Framework: CalSim3 and the
Winter-Run Lifecycle Model (WRLCM)

Drought

* Phase I: Drought Synthesis & Assessment
* Characterize historical droughts Synthetic
* Generate drought sequences ‘ MG ’

Sequences

Characterization

* Create corresponding CalSim3 input datasets == Water
: : Baseline CalSim . Supply
* Run Baseline CalSim for each sequence - Outcomes

Temperature,
Habitat,

* Run “downstream” component models Survival Models
* Run WRLCM
* Evaluate baseline salmon response to drought

Population
Outcomes

UC SANTA CRUZ ~Q% NOAA

3 H
9 > FISHERIES
G <
Ry oF O



Drought Characterization & Synthesis

 Selection: “Alternating renewal”

model (and related versions) e Run
 Examples: Lodiciga, H. A. (2005). Kendall & Dracup,  x Run sum (Deficit)
(1992)
* Drought = one or more years below a ﬂ
prescribed threshold X, 7 5
* Annual flow time series can be /’% :
characterized using statistical L P R inensiy
distributions of: ve Run
* Durations 2 Drought with the longest duration
* |Intensities 3.Drought with the highest intensity

Fig. 1. Drought characteristics using the run theory for a given threshold level.

 Total deficits (surpluses)

UC SANTA CAUZ w NOAA
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Drought Characterization & Synthesis:
Applying Method

Distribution of Sampled
Drought/Pluvial Drought/Pluvial

Distribution of Sampled Append to

. . Synthetic
Deficit/Surplus
Durations Duration SIS RIS /Surp Sequence

1e-gPluvial Length: 4 yrs 1e-gPluvial Length: 4 yrs

Flow Surplus, acre-feet Flow Surplus, acre-feet

Repeat with opposite condition
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Drought Characterization & Synthesis

Result:

* Unique sequence of
annual streamflow value:

* Wet and dry years no

longer occur in same ord: - /\ A M f f H
£ 201 A =
1.5 erv\,\j >\/\Jh | J\ﬂfl

* Each sequence T WY pReamene )

(realization) equally

plausible, conditional on Historical Sequence

the annual historical G |

dataset /\M\/\\ AA /W /‘
T M“\ ! v/\/V

1980 1990 2000 2010
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Drought Characterization & Synthesis

Annual 8-River Volume Exceedance: Gage &
Result: Synthetic Realizations

— Gage record (last 100 yrs)

* Generating 100-realization f s
ensemble of annual 8-
river flow volume
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PR R R R T |

w
o
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* Synthetic ensemble mean
converges toward source
data (gage record shown)

]
o
L1

* Ensemble includes
variation at all exceedance
levels

Eight River Index Annual Volume (million ac-ft)
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Analytical Framework: CalSim3 and the
Winter-Run Lifecycle Model (WRLCM)

Drought
Characterization

* Phase I: Drought Synthesis & Assessment

* Characterize historical droughts Synthetic
* Generate drought sequences SDfought
eaguences
* Create corresponding CalSim3 input datasets == Water
. . ‘ Baseline CalSim > Supply
* Run Baseline CalSim for each sequence BN/ Outcomes
Temperature,
Habitat,
* Run “downstream” component models Survival Models

* Run WRLCM
* Evaluate baseline salmon response to drought

Population
Outcomes
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Generated flow ensemble & CalSim3

* Generated 8-river annual flow alone is not sufficient for running
CalSim3

* Need to translate generated annual flow sequences into CalSim3 input
files

* Solution: bootstrap resampling of existing CalSim3 input datasets

e Select WY from CalSim3 input dataset with 8-river index total that best matches
the generated drought value

* Append selected WY to new CalSim3-compatible input dataset

* Method is simple and ensures completeness, but also prevents any
year from being drier/wetter than the driest/wettest in the base
record

UG SANTR GRUZ @ NOAA
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Example drought sequence — bootstrap
resampled timeseries

Mapping Synthetic Data to CalSim3 Data Mapping Synthetic Data to CalSim3 Data
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CalSim3 — Ensemble Output
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CalSim3 — Ensemble Output

Shasta Storage Exceedance Shasta Storage Annual Exceedance
April April
45001 4500 —
4000
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CalSim3 — Interpreting Distribution
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CalSim3 — Interpreting Distrbution

175 . around values
=== Baseline
Ensemble Output at select
> exceedance
l . levels indicates
CVP Ag Deliveries SOD Annual Exceedan § 10.0-
] : - g how much the
2000 | | s
] , 757 sequence
1750 ' 5.0 variation affects
. | |
1500 - the outcome
e ! |
%125()? I “°""% 40 o0 0 1000 1200 1400 1600 Examples
& I I Median Annual CVP Ag SOD Delivery (TAF) p
=
S | shown — 50%
S 7507 | exceedance
c —— i .
< 500 : 200 Baseline (median) and
] I 17.5 90%
250 I 190 exceedance
0 I — 52 values have
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% gro0 roughly the
Exceedance probability 75 . ore
- same variability
—

T T T T 1
200 400 600 800 1000 1200 1400 1600

90% Exceedance Annual CVP Ag SOD Delivery (TAF)



Connecting CalSim3 Results to Salmon

Outcomes

* Different parts of the CalSim3 domain
inform different aspects of the Winter Run
lifecycle

» Shasta-Keswick-Upper Sacramento River -
Early life stage

* Mainstem Sacramento River & Yolo Bypass 2
Rearing

* Delta & Bay = Rearing & Outmigration

* Each component requires translation of
CalSim3 output to

UG SANTA GRUL
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Translating CalSim3 Outputs &

Creating Reservoir
Temperature Model Inputs

LEGEND

@ Flow from CalSim

¢ Water Temperature -
Inputs

¢ Temperature

e Simulate w/ model

8o Redd (space and time

distribution)

UG SANTA GRUL
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Creating Temperature Model Inputs

* Challenge 1: Monthly CalSim3 = Temperature model daily/subdaily
resolution

* Challenge 2: Temperature models require multiple variable inputs
that are not part of CalSim3 datasets

e Solution:

* Resample by month from recent daily/hourly observational record used to
create temperature model datasets

e Condition resampling on monthly Shasta inflow inputs from CalSim3
* Adjust daily inflow volumes to match CalSim3 monthly totals

UG SANTR GRUZ @ NOAA
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Water Temperature Modeling Considerations

e Shasta & Keswick releases set by CalSim3 results, but Shasta TCD
operations are not

* How best to represent temperature management given storage and
release time series?

* Target temperature & location in upper Sacramento River below Keswick

» Targets dependent on spring conditions (Shasta tier frameworks from recent
LTO consultations)?

* An optimization approach to minimize temperature dependent mortality or
temperatures above a threshold?

UG SANTR GRUZ @ NOAA
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Next Steps

* Reservoir temperature modeling is ongoing

e Data from CalSim3 has been translated to inputs to other WRLCM
sub-models as well
e River and Delta habitats
e DSM2 -> ePTM -> Delta survival

 Combine sub-model outputs into complete WRLCM inputs & run for
each

e Evaluate Winter Run population changes under the full ensemble

UG SANTR GRUZ @ NOAA
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Final points

* Wet and dry periods of the last 100 years will not occur in the same
sequence or intensity in the next 100 years

* This might matter for how we evaluate effects to salmon

* We can generate ensembles of re-sequenced hydrology with plausible
droughts that vary in duration, frequency, and intensity from the historical
record

* Results give us a measure of uncertainty that arises from different
sequences & intensity of drought that could occur

* For water resources outcomes, this might be a distribution rather than a single
number for a performance metric

* Ongoing work will bring together all of the model components to evaluate
Winter Run population outcomes — stay tuned!
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Questions?

james.gilbert@ucsc.edu
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ife stage survival

* Shasta reservoir conditions and
summer releases determine water
temperatures in Sacramento River,
where Winter Run spawn

» Shasta storage < 3 MAF in May is
associated with an increase in
temperature related mortality of eggs

* Multiple years of low storage increase
risk to Winter Run population
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Reservoir storage affects salmon early life
stage survival

8

* Frequency of May storage below 3
MAF during a 6-year drought is
directly correlated with average
drought intensity (average
deficit/year)
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* Provides a heuristic by which to
judge risk in future projections

* More detailed early life stage modeling
still needed for a more accurate -

# Instances Shasta May
Storage < 3 MAF [3700 MCM]
N

picture | Mean Drought Deficit over 6-Year Drought (TAF)
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Droughts of at least 6 years occur in many
realizations

CalSim3 - Resampled 8-River Volume
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Drought Characterization & | — o
Synthesis: Data
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* Comparing paleohydrology
and gage records

8-River Annual Volume (MAF)

* Gage data has higher skew &

variance (tends drier, but has
wetter extremes) -

e Paleo record does have a few
drier years
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