

Modeling SAV in Bay Delta

Jiabi Du ([jdu@tamug.edu\)](mailto:jdu@tamug.edu) Zhengui Wang Joseph Zhang Jian Shen

Funding support from Delta Stewardship Council

SAV in Bay Delta

Major intrusive SAV – the "ecosystem engineers"

Rasmussen et al., 2020

Quick expansion of SAV in the northern Liberty Island

- In 2018, SAV covered 10,500 acres across regions of Liberty Island and the Central Delta
- Equivalent to 1/3 of the area of the waterways (Ustin et al. 2019)

Intrusive SAV's impact

- Decrease turbidity, detrimental to pelagic fish species
- Slows water movement and water exchange
- Alters the biological community
	- Support non-native fishes
	- Compete with phytoplankton
- Undermine large-scale tidal wetland restoration efforts that are designed to support Delta Smelt and Chinook Salmon

Intrusion of aquatic weeds is regarded as one reason for extinction of delta smelt (*Hypomesus transpacificus*)

Photo by Peter Johnsen, US Fish and Wildlife Service

Christman et al., 2023

SAV control in the Bay Delta

Fluoridone treat study by DWR

 Fluoridone treatment has impacts on SAV biomass, but not long-lasting

Challenges in modeling SAV

Error in hydrodynamic and water quality model

Two way coupling with hydrodynamics

Uncertainty in nutrient sources

Parameterization of light limitation

A fully coupled Hydro-ICM-SAV model

SAV module in SCHISM

- The SAV module is currently embedded in the ICM water quality model
- Two-way coupling

Hydro and Water quality model

Model domain and Nutrient loading point sources (red dots)

Hydro: 2018, set up from DWR

BGC (Biogeochemical) open boundary condition: another larger-domain BGC model (CoSiNE model) of the Pacific Ocean.

BGC initial condition: based on observation from multiple sources including USGS, Water Data Library from DWR, and California Environmental Monitoring Program.

Nutrient load from Waste Water Treatment Plants and many DICUs are included. Including major rivers, there are in total of 392 point sources.

SAV initial condition: constant on simulated regions Computational efficiency: 36 hr for one-year run with 560 cores on FRONTER

Salinity comparison between model and observation

Data from ~100 stations are compared (50 stations shown here). Model gives overall satisfactory performance in salinity.

Note that the model can accurately capture the small salinity variations

NH4: Model vs Observation

- Overall agreement of the seasonal variations
- Room for improvement

NO3: Model vs Observation

Chla: Model vs Observation

Reasonably reproduce the magnitude and seasonal variations of Chla

Comparison of chlorophyll-a (ug/L) between model results (green line) and observations (red dots) along Sacramento River and inside San Francisco Bay (SCR-Bay)

Yearly averaged surface Chla

SAV model

Following Cerco and Moore (2001) and Cerco et al. (2004)

- 1D model, no advection or diffusion
- Biomasses of leaf, stem, and root are computed separately
- Key controlling factors include light, nutrient, and temperature
- Nutrient sources: water column and sediment

Light condition above/below the canopy is treated differently

Light attenuation below the canopy is determined by

- Total suspended sediment concentration
- Chl-a concentration
- Self shading (canopy height can exceed the surface)

SAV's biomass in French Island, when background light attenuation is set to zero

By tuning the background light attenuation, the model qualitatively reproduce the seasonal variations.

- Consistent seasonal cycle
- Ratio of minimum to maximum biomass \sim 1:2

Water Quality & Food Web

Continuous Sonde SAV Rake Sample Water Hyacinth (Oct. 2016) Water Primrose (Oct. 2016) V (Oct. 2016)

Monthly Plankton Sample Monthly Plankton & Discrete WQ

 $\sqrt{2}$

French Island (Not Treated)

NO SAV at the inlet

- Larger depth
- Limited light condition

Seasonal growth of SAV

Rasmussen et al., 2020

Observation data at French Island (untreated) show notable seasonality.

- Lowest biomass in summer
- Summer is the season when fast growth begin
- Biomass peaks in winter
- Different from phytoplankton dynamics

Seasonal growth of SAV

- Similar seasonality occurs to SAV in other areas
- SAV biomass in Lake Taihu peaks in the winter

Modeled biomass at French Island

Zhu et al., 2019

SAV's impact on water quality

Impact on dissolved inorganic nitrogen

- SAV depletes nutrient concentration in the water column
- SAV leads to nutrient gradient between SAV region and nearby non-SAV region
- The gradient, together with tidal current, results in larger tidal variability

SAV's impact on water quality

On Chl-a

Chlorophyll

Possible Reason: slow water exchange enhances accumulation of phytoplankton

Days in 2018

Response to Sac Regional nutrient reduction

 38.8

38.4

37.8 37.6 37.4

 -123.00 -122.75 -122.50 -122.25 -122.00 -121.75 -121.50 -121.25

Sac Regional Wastewater

Treatment Plant

- 50% of NH4 reduction at Sac Reginal
- Slightly decreased of SAV, as nutrient in water column is reduced

Yearly averaged SAV biomass

Conclusions

- ❖A fully coupled Hydro-ICM-SAV model is applied for the Bay Delta and successfully simulates the seasonal variation of SAV biomass
- ❖Light condition is critical important for SAV's growth
- ❖Existing of SAV tends to deplete the water column nutrient but interesting increase the chl-a in the SAV region