Extrapolating Subsidence Temporally and Spatially from 1D Models

Pete Dennehy CWEMF Annual Conference April 19, 2023

Acknowledgements

- Kaweah Subbasin Groundwater Sustainability Agencies
- Stanford University Geophysics Dept Matthew Lees, Rosemary Knight

Presentation Overview

- Provide study background
- Introduce Stanford 1D subsidence model
- Show steps to develop and calibrate spreadsheet tool
- Demonstrate how tool is used to evaluate potential subsidence impacts
- Summarize next steps for further study

Subsidence Background

- Groundwater overdraft and clay compaction is the primary cause of subsidence in Central Valley
- Some subsidence is instantaneous
 - Elastic subsidence is reversible
 - Inelastic subsidence is permanent
- Residual subsidence can occur long after overdraft due to gradual head decline in low conductivity clays

https://www.usgs.gov/media/images/aquifer-compaction

Project Background

- Kaweah Subbasin subsidence impacts analysis for 2022 GSP Revision
 - Groundwater model with subsidence package not developed yet
 - 1D compaction models for 2 sites prepared by Stanford
 - Extrapolated 1D results using spreadsheet curve fitting approach to develop SMC

2015 to 2023 Cumulative InSAR Subsidence

1D Compaction Model

Stanford 1D Compaction Model Development

AGUITT.

Water Resource Research"

Jun 2022

ARTICLE

Development and Application of a 1D Compaction Model to Understand 65 Years of Subsidence in the San Joaquin Valley

View article page

Matthew Lees, Rosemary Knight, Ryan Smith

https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2021WR031390

- 1D compaction model simulates subsidence based on head and aquifer properties
- Calibrated using historical groundwater and subsidence data from 1954-2017
- Models for 2 sites in San Joaquin Valley
- Published results for 1 site (South Hanford) in Water Resources Research

1D Model Main Takeaways

- Most subsidence (~90%) related to lowering groundwater levels below Corcoran Clay
- Subsidence occurs in Corcoran Clay and other thick clay layers below
- Residual subsidence is important and can take more than 50 years to equilibrate

1D Model Application for Kaweah Subbasin 2022 GSP Revisions

1D Model Locations on 2015-2023 InSAR Map

 Ran 1D models forward to project subsidence at groundwater level sustainable management criteria

Projected Subsidence at Groundwater Level Minimum Thresholds

Spreadsheet Tool to Extrapolate 1D Model Results

Spreadsheet Tool Development

- Created simplified set of equations, inputs, and parameters in Excel spreadsheet to fit the 1D model results
- Inputs variable
 - Groundwater levels above and below Corcoran Clay
 - Clay thickness from geophysical logs
- Parameters constant
 - Active subsidence as proportion of overdraft
 - Residual subsidence tailing
 - Unique scaling factors for depths above and below Corcoran Clay

Estimating Subsidence Spatially

- 1D to 2D extrapolation (77 points at 2 mi spacing)
- Estimated subsidence at each point
 - Governing equations
 - Historical groundwater levels from subbasin groundwater model and management criteria (MT and MO)
 - Approximate clay thickness from CVHM
- Interpolated subsidence results in GIS

Calibrating Spreadsheet Clay Thickness Using InSAR Data

- Used 2015-2021 subsidence data from InSAR to calibrate spreadsheet grid
- Calibrated input clay thickness

Calibrated Clay Thickness

Analyzing Subsidence Results

Subsidence at Groundwater Level Minimum Threshold

- Results show worst case scenario for impacts analysis
- Residual subsidence adds up: >40 feet of total subsidence and >20 feet residual subsidence could occur by 2070
- Clay matters: 0 to 20 feet subsidence projected to east of Corcoran Clay

Projected 2020 to 2070 Subsidence at Minimum Threshold

Differential Subsidence Impacts Analysis

- Estimate differential subsidence on canals and waterways
- Significant and unreasonable differential subsidence = 1 ft / 1.5 mile

Projected 2020 to 2070 Differential Subsidence at Minimum Threshold

Summary and Discussion

Summary

- Developed spreadsheet tool for projecting subsidence using simplified set of equations, inputs, and parameters
- Extrapolated for spatial and temporal analysis
- Calibrated using clay thickness and InSAR observations
- Projected subsidence and locations of infrastructure impacts under various management scenarios and timescales
- Created flexible approach that could be used in other areas with historical groundwater level and subsidence data but no numerical model for subsidence

Discussion and Potential Research Questions

- What is ultimate compaction of compressible clays and will it be reached???
- Does spreadsheet tool work as well to east of Corcoran Clay where not as well constrained with 1D model data???
- Would spreadsheet tool equations work outside of San Joaquin Valley???
- How does the spreadsheet calibrated clay compare to AEM data???
- How does the spreadsheet projected subsidence compare to MODFLOW or other numerical models???

