

2021 LTO Climate Change Dataset Development

April 19th, 2023 Kevin Thielen, PhD Drew Allan Loney, PhD PE Modeling Division, Bay-Delta Office DRAFT – SUBJECT TO REVISION

Collaborators

- Bureau of Reclamation
 - Kunxuan Wang
 - Michael Wright (Emeritus)
- California Department of Water Resources
 - Andrew Schwarz

Jacobs Engineering

- Steve Micko
- Tapash Das
- Rob Leaf

Motivation

- Climate change requires continuous learning
 - New data
 - Revised methods
- Relative importance of climate change variables shift among studies
- Since CCTAG:
 - 7 more years knowledge with climate science
 - Recognition of the impacts of downscaling on water management decision variables

Overview

- Identify likely representative climate models
- Investigate RCP & downscaling effects

Initial analysis for remainder of climate change analysis workflow

Reclamation, 2021

GCM Limitations

- GCMs represent numerical uncertainty
 - Model physical processes
 - Initial conditions
- RCPs/SSPs represent likelihood
- GCMs and RCPs/SSPs jointly contribute to the overall uncertainty
- GCM performance varies by how well they capture regional physical processes

Lehner et al., 2020

Representativeness

- Cull GCMs based on study relevant, regional performance metrics
- Eliminates the worst performers while maintaining numerical uncertainty
- Resulting GCM subset is "credibly representative" of regional future conditions
- Statistical evaluation over the reanalysis period can characterize GCM performance
- Downscaling must be included because it alters the statistical performance

Process

Process

- Extension of DWR CCTAG selection process for CMIP5
- Include downscaling in the selection
- Exclude worst models using water management criteria
 - Temperature performance similar across all models
 - Focus on precipitation as first order variable
- Metrics
 - Temporal distribution
 - Spatial distribution
 - Interannual variability
- Clip data to HUC2 California basin

Temporal Distribution

- Evaluates differences in precipitation timing over the full historical period
- Uses the PRISM 800m dataset as observed
- Monthly and full period statistics
 - Mean average error
 - Cumulative Rank Probability Score
 - Cumulative Rank Probability Skill Score
 - Compares the skill back to climatology

Temporal Distribution

 MAE in precipitation across the basin

 No strong differentiation across the GCMS

Spatial Distribution

- Evaluates the north/south distribution of precipitation
 - Driven by AR placement rather than orographic affects
- Mean annual/monthly precipitation across longitude
- Zonal (latitude) statistics as a function of mean
- Two Sample Kolmogorov-Smirnov (KS) test
 - Measures the difference in the cumulative precipitation from south to north
- No meaningful difference in performance

Spatial Distribution

- Different monthly distributions that are not meaningful on annual scales
- No strong differentiation across the GCMs

Interannual Variability

- Captures resolution of interannual cycles
 - Timing and magnitude of transitions are both important
 - Driven by carryover considerations
- Define WY types based on percentiles from PRISM
 - Critical Dry: P <10%
 - Dry: 10%<P<25%
 - Below Normal 25% < P < 50%
 - Above Normal 50%<P<75%
 - Wet 75%<P
- KS test on mean annual precipitation
 - No meaningful difference in performance

Interannual Variability

W-D

BN-W

AN-D

AN-CD

CD-AN

W-BN

- Bin WY and transition rates
- Treat states as continuous for a KS test
 - Removed outliers greater than 1 std above the mean
- Contingent WY mean error
 - Binned GCM by WY type
 - Removed outliers with +/- 10% bias in any type
 - Enforces that the WY exists
 - Enforces no bias in types

GCM Selection Results

- 20 of the 32 GCMs remained after the selection
- Use both emissions scenarios assuming equal likelihood
 - Lower emission trajectory (RCP 4.5)
 - Higher emission trajectory (RCP 8.5)
- Use ensemble trends rather than features specific to specific GCMs
 - More confidence in trends across the GCMs than individual GCM results

Anticipated Change in Runoff - 8RI

Selection	Relative Annual Change*
20 CCTAG CCTAG Mean	4.7%
64 CMIP5 Mean	-1.4%
40 LTO Mean	-1.0%

- Change in eight-river index
- Preliminary estimate
 - Calculated from a weighted average of each GCM used in rainfall/runoff model
- Modeling process
 - Treat selected GCMs as an ensemble
 - Calculate precipitation, temperature adjustment based on ensemble properties
 - Apply scenario adjustment factors individually to each grid cell

Scenarios - Precipitation

- Intended to describe the likely range of numerical uncertainty
- Most likely
 - Median 50th Percentile
- Sensitivity Analysis for T, P
 - Hot Dry 25th Percentiles
 - Cool Wet 75th Percentile
 - Very Dry 5th Percentile

Drew Allan Loney dloney@usbr.gov

Kevin Thielen kthielen@usbr.gov Modeling Division, Bay-Delta Office

