Modeling HABS with CE-QUAL-W2: Approaches and Future Challenges

Mike Deas

Watercourse Engineering, Inc

Mike.deas@watercourseinc.com

Cyanobacteria – Attributes

- Single celled, photosynthetic organisms with high reproduction rates
- Some cyanobacteria
 - Control their buoyancy and thus vertical position in the water column
 - Fix atmospheric nitrogen (N2)
 - Produce toxins (e.g., neurotoxins, hepatotoxins)
 - Form colonies that aid with mobility, reduced predation, and shade out competition
 - Have unique reproductive strategies
 - Other unique attributes.
- Harmful algal blooms (HABS) are typically related to blooms that include toxin producing strains, create public health hazards and/or environmental impacts
- Nuisance blooms of non-toxic species also occur

CE-QUAL-W2

- Two-dimensional laterally averaged model
- Hydrodynamic and water quality model
- Capable of modeling a wide suite of water quality constituents including detailed representation of multiple algae groups
- ALP0 Chl a to algal biomass conversion factor, phytoplankton, mg Chl a to mg-A ALP1 Fraction of algal biomass that is nitrogen, phytoplankton, mg-N/mg A ALP2 Fraction of algal biomass that is phosphorous, phytoplankton, mg-P/mg A MUMAX Maximum specific growth rate, phytoplankton, 1/d RESP Local respiration algae, phytoplankton, 1/d Local mortality rate of algae, phytoplankton, 1/d RESP SIG1 Settling rate of algae, phytoplankton, 1/d Half saturation coefficient for light, phytoplankton, KJ m-2 s-1 KLIGHT PREFN Preference factor for NH3-N, phytoplankton Chl a to algal biomass conversion factor, bed algae, mg Chl_a to mg-A **ABLPO** BMUMAXMaximum specific growth rate, bed algae, 1/d Local respiration rate of algae, bed algae, 1/d BRESP GRAZE Local respiration rate of algae, bed algae, 1/d Local respiration rate of algae, bed algae, 1/d BMORT KBLIGHT Half-saturation coefficient for light, bed algae, KJ m-2 s-1
- BMORT Local respiration rate of algae bed algae KBLIGHT Half-saturation coefficier PBREFN Preference factor for NH3 BET1 Rate constant: biological BET2 Rate constant: biological Rate constant: hydrolysis BET3 KNINH First order nitrification in Κ1 Deoxygenation rate cons⁻ Minimum reaeration rate Michaelis-Menton half sa KNITR KPHOS Michaelis-Menton half sa Fraction of algal biomass ABLP1 Fraction of algal biomass ABLP2 Half-saturation coefficier KBNITR KBPHOS Half-saturation coefficien Iron Gate Emm

Case Studies

• CE-QUAL-W2 Modeling Approaches - Processes

- Representing buoyancy compensating cyanobacteria
- Representing nitrogen fixing cyanobacteria
- Representing dissolved oxygen constraints on growth and mortality*
- CE-QUAL-W2 Modeling Approaches Prescriptions
 - Enhanced mixing (cove)
 - Barrier Curtain*
 - Algaecide Treatment*
 - Reservoir Drawdown*
 - Hypolimnetic oxygenation*

* Not covered herein

CE-QUAL-W2 Phytoplankton Logic

- Complex representation
- Multiple algae groups

• Other water quality interactions

Temperature dependent

where:

K

- z = cell height
- Z_{μ} = net growth rate of a zooplankton species
- σ = zooplankton grazing preference factors

$$f_{ag} = algal growth rate, sec^{-1}$$

- K_{ar} = algal dark respiration rate, sec⁻¹
- $K_{ae} =$ algal excretion rate, sec^{-1}
- K_{am} = algal mortality rate, sec⁻¹
- ω_a = algal settling rate, *m sec⁻¹*
- Φ_a = algal concentration, $g m^{-3}$

CE-QUAL-W2 Phytoplankton Logic

- Complex representation
- Multiple algae groups

- Other water quality interactions
- Temperature dependent

where:

K

- z = cell height
- Z_{μ} = net growth rate of a zooplankton species
- σ = zooplankton grazing preference factors

$$L_{ag} = algal growth rate, sec^{-1}$$

- K_{ar} = algal dark respiration rate, sec⁻¹
- K_{ae} = algal excretion rate, sec^{-1}
- K_{am} = algal mortality rate, sec⁻¹
- ω_a = algal settling rate, *m sec⁻¹*
- Φ_a = algal concentration, $g m^{-3}$

Vertical Movement of Cyanobacteria

- Gas Vesicles are used to "control" location in water column (formation, collapse, protein or carbohydrate content, environmental conditions, colony size/structure, other)
- Preferential position
 - Light
 - Nutrients
 - Competition
- Complex process

Settling Rate $(S_a = f(\omega_a \frac{\partial \Phi_a}{\partial z}))$

- Positive ω_a : negatively buoyant
- Negative or zero ω_a : positively buoyant or neutrally buoyant
- Subject to simulated aquatic system mixing processes
- CE-QUAL-W2 Existing Formulation
 - Cyanobacteria or other floating phytoplankton: 0.0-0.05 m day-1 and can specify a negative settling velocity (CE-QUAL-W2 2021)
 - Settling rate = 0 (Smith and Kiesling 2019)
- CE-QUAL-W2 Modified Formulation
 - Use specific logic to model vertical migration (Overman 2019*) new code
 - Parameterization (field data) challenge

Nitrogen Fixation Growth $(S_a = f(K_{ag}\Phi))$

Limiting growth factor

- Light
- Phosphorus
- Nitrogen
- Silica
- Heterocyst: specialized fix nitrogen (N2)

 $K_{ag} = \gamma_{ar} \gamma_{af} \lambda_{min} K_{agmax}$

where:

- γ_{ar} = temperature rate multiplier for rising limb of curve
- γ_{af} = temperature rate multiplier for falling limb of curve
- λ_{min} = multiplier for limiting growth factor (minimum of light, phosphorus, silica, and nitrogen)
- K_{ag} = algal growth rate, sec⁻¹
- K_{agmax} = maximum algal growth rate, sec⁻¹

where:

- Φ_i = phosphorus or nitrate + ammonium concentration, $g m^{-3}$
- P_i = half-saturation coefficient for phosphorus or nitrate + ammonium, $g m^{-3}$

Nitrogen Fixation Growth $(S_a = f(K_{ag}\Phi))$

• CE-QUAL-W2 – Existing Formulation

Set half saturation coefficient for nitrate and ammonia to zero

 $\lambda_i(\mathbf{P}_i=0) = \frac{\Phi_i}{\Phi_i} = 1.0$

- No nutrient limitation
- Allows
 - Cyanobacteria to reproduce under low inorganic nitrogen concentrations
 - Effectively incorporates "load" due to N-fixation consistent with algae stoichiometry (≈0.08)

Prescription: Mixing a Cove

- Conceptualized isolating a cove using a barrier curtain
- Used CE-QUAL-W2 to assess mixing required to disrupt cyanobacteria
- Used vertical turbulent diffusion coefficient as a metric after Huisman et al. (2004)

Mixing Impacts on Microcystis

- Vertical mixing in the water column reduces the advantages of colonization and buoyancy compensation by vacuolated cyanobacteria
- If mixing is sufficient and depth great enough, other species can outcompete cyanobacteria

Predicted response of *Microcystis*, diatoms, and green algae as a function of water-column depth and turbulent diffusion (from Huisman et al. 2004).

Leveraging CE-QUAL-W2

- Using the temporal and spatial distribution of heat in the cove (eqtn 1))...
- Calculate eddy diffusivity values (eqtn 2) using simulated CE-QUAL-W2 vertical temperature profiles
- Three conditions
 - No curtain
 - Curtain with no circulation
 - Curtain with circulation
- Calculate turbulent diffusion coefficient (eqtn 2) and compare with Huisman

(1)	$\rho C_p K_z(z) \frac{dT}{dz} \Big _z^{z_{max}}$	F(z) =	$-\int_{z}^{z_{ma}}$	$\frac{dT}{dt}F(z)dz + R(z)dz + R$	$z)F(z) - \int_{z}^{z_{max}}$	H(z)l(z)dz
Where	:		-		-	

- K_s(z) = turbulent diffusion coefficient [square centimeters per second (cm²/s)]
- z = depth [centimeters (cm)]
- zwax = maximum water depth (cm)
- ρ = water density [grams per cubic centimeter (g/cm³)]
- g = mass [grams (g)]
- C_p = specific heat of water [Joules per degree Celsius per gram g (J/°C·g)]
- T = water temperature [degrees Celsius (°C)]
- = time [seconds (s)]
- F(z) = water body surface area at depth z [square centimeters (cm²)]
- R(z) = solar (short-wave) radiation at depth z [watts per square centimeter (W/cm²)]
- H(z) = sediment heat exchange [Joules per square centimeter second (J/cm²·s)]
- l(z) = sediment area at depth z (cm²)

Solving for the turbulent diffusion coefficient $(K_{x}(z))$ yields:

(2)
$$K_z(z) = \left[-\int_z^{z_{max}} \rho C_p \frac{dT}{dt} F(z) dz + R(z) F(z) - \int_z^{z_{max}} H(z) l(z) dz \right] \cdot \left[\rho C_p \frac{dT}{dz} F(z) \right]^{-1}$$

(see Jassby and Powell (1975) and Benoit and Hemond (1974)

Results

(Deg C)

16 18

20

22 24

26

28

30

(Deg C)

ÌБ 18

20

22 -24

26 -

28 30

0.02 m/s

(Deg C)

18

20

30

0.02 m/s

- Curtain with 1 cms (35.3 cfs) circulation produces K, from 2 cm²/s to >50 cm²/s in top 8 m of cove (Secchi 1.0-1.5m)
- Hydraulic residence time <5 days
- Results suggest viable control measure in this 10 m cove

Cyanobacteria Representation in CE-QUAL-W2: Considerations

- Blooms are often spatially heterogeneous (x-y-z) and dynamic through time
- Grid resolution is a key consideration, depending on objective
- Thermal stratification -> effectively modeled
- Water quality dynamics -> effectively modeled
- Species/group competition is challenging
- Can require considerable field observations to parameterize and test model for cyanobacteria simulation
- Recommend starting big (seasonal responses) and refine as needed

Discussion

Citations

- Benoit, G. and F.F. Hemond. 1996. Vertical eddy diffusion calculated by the flux gradient method: Significance of sediment-water heat exchange. Limnology and Oceanography. 41(1). Pp 157-168.
- Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E.A. Kardinaal, J. M. H. Verspagen, and B. Sommeijer. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970.
- Jassby, A., and T. Powell. 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 20: 530-543.
- Overman, Corina Christina Mae, "Modeling Vertical Migration of Cyanobacteria and Zooplankton" (2019). Dissertations and Theses. Paper 5178. https://doi.org/10.15760/etd.7054
- Smith, E.A., and Kiesling, R.L., 2019, Updates to the Madison Lake (Minnesota) CE-QUAL-W2 water-quality model for assessing algal community dynamics: U.S. Geological Survey Open-File Report 2019–xxxx, xx p., <u>http://dx.doi.org/10.3133/XXXXX</u>
- CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.5. Part 3 Input and Output Files User Manual. 2021. Ed. S. Wells. Department of Civil and Environmental Engineering, Portland State University. August.