Modeling HABS with CE-QUAL-W2: Approaches and Future Challenges

Mike Deas

Watercourse Engineering, Inc

Mike.deas@watercourseinc.com

Cyanobacteria – Attributes

- Single celled, photosynthetic organisms with high reproduction rates
- Some cyanobacteria
	- Control their buoyancy and thus vertical position in the water column
	- Fix atmospheric nitrogen (N2)
	- Produce toxins (e.g., neurotoxins, hepatotoxins)
	- Form colonies that aid with mobility, reduced predation, and shade out competition
	- Have unique reproductive strategies
	- Other unique attributes.
- Harmful algal blooms (HABS) are typically related to blooms that include toxin producing strains, create public health hazards and/or environmental impacts
- Nuisance blooms of non-toxic species also occur

CE-QUAL-W2

- Two-dimensional laterally averaged model
- Hydrodynamic and water quality model
- Capable of modeling a wide suite of water quality constituents including detailed representation of multiple algae groups
- **ALPO** Chl a to algal biomass conversion factor, phytoplankton, mg Chl a to mg-A ALP1 Fraction of algal biomass that is nitrogen, phytoplankton, mg-N/mg A Fraction of algal biomass that is phosphorous, phytoplankton, mg-P/mg A ALP₂ MUMAX Maximum specific growth rate, phytoplankton, 1/d **RESP** Local respiration algae, phytoplankton, 1/d **RESP** Local mortality rate of algae, phytoplankton, 1/d $SIG1$ Settling rate of algae, phytoplankton, 1/d Half saturation coefficient for light, phytoplankton, KJ m-2 s-1 **KLIGHT PREFN** Preference factor for NH3-N, phytoplankton **ABLPO** Chl a to algal biomass conversion factor, bed algae, mg Chl a to mg-A BMUMAXMaximum specific growth rate, bed algae, 1/d Local respiration rate of algae, bed algae, 1/d **BRESP GRAZE** Local respiration rate of algae, bed algae, 1/d Local respiration rate of algae, bed algae, 1/d **BMORT** KBLIGHT Half-saturation coefficient for light, bed algae, KJ m-2 s-1
- **KBLIGHT Half-saturation coefficier** PBREFN Preference factor for NH3 BET1 Rate constant: biological BET2 Rate constant: biological BET3 Rate constant: hydrolysis **KNINH** First order nitrification in $K1$ Deoxygenation rate const Minimum reaeration rate Michaelis-Menton half sa **KNITR KPHOS** Michaelis-Menton half sa Fraction of algal biomass ABLP1 ABLP2 Fraction of algal biomass Half-saturation coefficier **KBNITR**

Case Studies

• CE-QUAL-W2 Modeling Approaches - Processes

- Representing buoyancy compensating cyanobacteria
- Representing nitrogen fixing cyanobacteria
- Representing dissolved oxygen constraints on growth and mortality*
- CE-QUAL-W2 Modeling Approaches Prescriptions
	- Enhanced mixing (cove)
	- Barrier Curtain*
	- Algaecide Treatment*
	- Reservoir Drawdown*
	- Hypolimnetic oxygenation*

* Not covered herein

CE-QUAL-W2 Phytoplankton Logic

- Complex representation
- Multiple algae groups
- Other water quality interactions
- Temperature dependent

where:

- $z =$ cell height
- Z_u = net growth rate of a zooplankton species
- σ = zooplankton grazing preference factors

$$
\zeta_{ag} = \text{algal growth rate}, \text{sec}^1
$$

- K_{ar} = algal dark respiration rate, sec⁻¹
- K_{ae} = algal excretion rate, sec⁻¹ $K_{\text{am}} =$ algal mortality rate, sec⁻¹
- ω_a = algal settling rate, *m* sec⁻¹
- Φ_a = algal concentration, g m⁻³

CE-QUAL-W2 Phytoplankton Logic

- Complex representation
- Multiple algae groups
- Other water quality interactions
- Temperature dependent

 $\partial \varPhi_a$ $S_a = K_{ag} \Phi_a - K_{ar} \Phi_a - K_{ae} \Phi_a - K_{am} \Phi_a$ $\partial \overline{z}$ respiration excretion mortality settling $-\sum_{\alpha=1}^{\infty}\left(Z_{\mu}\varPhi_{\alpha\alpha} \frac{\sigma_{\alpha_{1g}}\varPhi_{\alpha}}{\sum\sigma_{\alpha_{1g}}\varPhi_{\alpha}+\sigma_{\rho o m}\varPhi_{\rho o m}+\sum\sigma_{\alpha o}\varPhi_{\alpha o}}\right)$ net loss to grazing

where:

- $z =$ cell height
- Z_u = net growth rate of a zooplankton species
- σ = zooplankton grazing preference factors

 K_{ag} = algal growth rate, sec⁻¹

- K_{ar} = algal dark respiration rate, sec⁻¹
- K_{ae} = algal excretion rate, sec⁻¹ $K_{\text{am}} =$ algal mortality rate, sec⁻¹
-
- ω_a = algal settling rate, *m* sec⁻¹
- Φ_a = algal concentration, g m⁻³

Vertical Movement of Cyanobacteria

- Gas Vesicles are used to "control" location in water column (formation, collapse, protein or carbohydrate content, environmental conditions, colony size/structure, other)
- Preferential position
	- Light
	- Nutrients
	- Competition
- Complex process

Settling Rate $(S_a = f(\omega_a))$ $\partial \Phi_a$ $\frac{\partial \Psi}{\partial z}$))

- Positive ω_a : negatively buoyant
- Negative or zero ω_a : positively buoyant or neutrally buoyant
- Subject to simulated aquatic system mixing processes
- CE-QUAL-W2 Existing Formulation
	- Cyanobacteria or other floating phytoplankton: 0.0-0.05 m day-1 and can specify a negative settling velocity (CE-QUAL-W2 2021)
	- Settling rate = 0 (Smith and Kiesling 2019)
- CE-QUAL-W2 Modified Formulation
	- Use specific logic to model vertical migration (Overman 2019*) new code
	- Parameterization (field data) challenge

Nitrogen Fixation Growth $(S_a = f(K_{ag}\Phi))$

- Limiting growth factor
	- Light
	- Phosphorus
	- Nitrogen
	- Silica
- Heterocyst: specialized fix nitrogen (N2)

 $K_{ag} = \gamma_{ar} \gamma_{af} \lambda_{min} K_{agmax}$

where:

- γ_{ar} = temperature rate multiplier for rising limb of curve
- γ_{af} = temperature rate multiplier for falling limb of curve
- λ_{min} = multiplier for limiting growth factor (minimum of light, phosphorus, silica, and nitro $gen)$
- K_{ag} = algal growth rate, sec⁻¹
- $K_{\text{agmax}} = \text{maximum algal growth rate}, \text{sec}^{-1}$

where:

 Φ_i = phosphorus or nitrate + ammonium concentration, g m⁻³

 P_i = half-saturation coefficient for phosphorus or nitrate + ammonium, g $m³$

Nitrogen Fixation Growth $(S_a = f(K_{aa} \Phi))$

• CE-QUAL-W2 – Existing Formulation

• Set half saturation coefficient for nitrate and ammonia to zero

 $\lambda_i(P_i = 0) =$ Φ_i Φ_i $= 1.0$

- No nutrient limitation
- Allows
	- Cyanobacteria to reproduce under low inorganic nitrogen concentrations
	- Effectively incorporates "load" due to N-fixation consistent with algae stoichiometry (≈0.08)

Prescription: Mixing a Cove

- Conceptualized isolating a cove using a barrier curtain
- Used CE-QUAL-W2 to assess mixing required to disrupt cyanobacteria
- Used vertical turbulent diffusion coefficient as a metric after Huisman et al. (2004)

Mixing Impacts on Microcystis

- Vertical mixing in the water column reduces the advantages of colonization and buoyancy compensation by vacuolated cyanobacteria
- If mixing is sufficient and depth great enough, other species can outcompete cyanobacteria

Predicted response of *Microcystis*, diatoms, and green algae as a function of water-column depth and turbulent diffusion (from Huisman et al. 2004).

Leveraging CE-QUAL-W2

- Using the temporal and spatial distribution of heat in the cove (eqtn $(1))...$
- Calculate eddy diffusivity values (eqtn 2) using simulated CE-QUAL-W2 vertical temperature profiles
- Three conditions
	- No curtain
	- Curtain with no circulation
	- Curtain with circulation
- Calculate turbulent diffusion coefficient (eqtn 2) and compare with Huisman

- = maximum water depth (cm) $Z_{\rm max}$
- = water density [grams per cubic centimeter (g/cm^3)] ρ
- $=$ mass [grams (g)] g
- = specific heat of water [Joules per degree Celsius per gram g (J/°C·g)] C_{D}
- T = water temperature [degrees Celsius (°C)]
	- $=$ time [seconds (s)]
- = water body surface area at depth z [square centimeters (cm²)] $F(z)$
- = solar (short-wave) radiation at depth z [watts per square centimeter (W/cm²)] $R(z)$
- = sediment heat exchange [Joules per square centimeter second (J/cm^2-s)] $H(z)$
- $=$ sediment area at depth z (cm²) $I(z)$

Solving for the turbulent diffusion coefficient $(K₂(z))$ yields:

$$
(2) \qquad K_z(z) = \left[- \int_z^{z_{max}} \rho C_p \frac{dT}{dt} F(z) dz + R(z) F(z) - \int_z^{z_{max}} H(z) l(z) dz \right] \cdot \left[\rho C_p \frac{dT}{dz} F(z) \right]^{-1}
$$

(see Jassby and Powell (1975) and Benoit and Hemond (1974)

Results

[Deg C]

is-18

 $20 -$

 $22 24$

 26

28

an

[Deg C]

 $16 18₁$

 $20 22 24₁$

 $26 -$

 28 m-

Velocity

 $[$ Deg $C]$

Ĩß. 18

20 \boldsymbol{z}

24

26

28

30

Velocity

 $0.02 \, \mathrm{m/s}$

 0.02 m/s

- Curtain with 1 cms (35.3 cfs) circulation produces $K_{1/2}$ from 2 cm²/s to >50 cm²/s in top 8 m of cove (Secchi 1.0-1.5m)
- Hydraulic residence time <5 days
- Results suggest viable control measure in this 10 m cove

Cyanobacteria Representation in CE-QUAL-W2: Considerations

- Blooms are often spatially heterogeneous (x-y-z) and dynamic through time
- Grid resolution is a key consideration, depending on objective
- Thermal stratification -> effectively modeled
- Water quality dynamics -> effectively modeled
- Species/group competition is challenging
- Can require considerable field observations to parameterize and test model for cyanobacteria simulation
- Recommend starting big (seasonal responses) and refine as needed

Discussion

Citations

- Benoit, G. and F.F. Hemond. 1996. Vertical eddy diffusion calculated by the flux gradient method: Significance of sediment-water heat exchange. Limnology and Oceanography. 41(1). Pp 157-168.
- Huisman, J., J. Sharples, J. M. Stroom, P. M. Visser, W. E.A. Kardinaal, J. M. H. Verspagen, and B. Sommeijer. 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970.
- Jassby, A., and T. Powell. 1975. Vertical patterns of eddy diffusion during stratification in Castle Lake, California. Limnol. Oceanogr. 20: 530‐543.
- Overman, Corina Christina Mae, "Modeling Vertical Migration of Cyanobacteria and Zooplankton" (2019). Dissertations and Theses. Paper 5178. https://doi.org/10.15760/etd.7054
- Smith, E.A., and Kiesling, R.L., 2019, Updates to the Madison Lake (Minnesota) CE-QUAL-W2 water-quality model for assessing algal community dynamics: U.S. Geological Survey Open-File Report 2019 –xxxx, xx p.,
- CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 4.5. Part 3 Input and Output Files - User Manual. 2021. Ed. S. Wells. Department of Civil and Environmental Engineering, Portland State University. August.