Modeling HABS with CE-QUAL-W2
and Future Challenges
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Cyanobacteria — Attributes

 Single celled, photosynthetic organisms with high reproduction rates

* Some cyanobacteria
* Control their buoyancy and thus vertical position in the water column
* Fix atmospheric nitrogen (N2)
* Produce toxins (e.g., neurotoxins, hepatotoxins)

* Form colonies that aid with mobility, reduced predation, and shade out
competition

* Have unique reproductive strategies
e Other unique attributes.

 Harmful algal blooms (HABS) are typically related to blooms that
include toxin producing strains, create public health hazards and/or
environmental impacts

* Nuisance blooms of non-toxic species also occur



CE-QUAL-W?2

* Two-dimensional laterally averaged model

* Hydrodynamic and water quality model

e Capable of modeling a wide suite of water quality constituents
including detailed representation of multiple algae groups

ALPO Chl a to algal biomass conversion factor, phytoplankton, mg Chl_a to mg-A
ALP1 Fraction of algal biomass that is nitrogen, phytoplankton, mg-N/mg A
ALP2 Fraction of algal biomass that is phosphorous, phytoplankton, mg-P/mg A
MUMAX Maximum specific growth rate, phytoplankton, 1/d

RESP Local respiration algae, phytoplankton, 1/d

RESP Local mortality rate of algae, phytoplankton, 1/d

SIG1 Settling rate of algae, phytoplankton, 1/d

KLIGHT Half saturation coefficient for light, phytoplankton, Kl m-2 s-1

PREFN Preference factor for NH3-N, phytoplankton

ABLPO  Chl a to algal biomass conversion factor, bed algae, mg Chl_a to mg-A
BMUMAXMaximum specific growth rate, bed algae, 1/d

BRESP  Local respiration rate of algae, bed algae, 1/d

GRAZE Local respiration rate of algae, bed algae, 1/d

BMORT Local respiration rate of algae, bed algae, 1/d

KBLIGHT Half-saturation coefficient for light, bed algae, KI m-2 s-1

BMORT
KBLIGHT
PBREFN
BET1
BET2
BET3
KNINH
K1

KNITR
KPHOS
ABLP1
ABLP2
KBNITR
KBPHOS

Local respiration rate of algae kb
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Half-saturation coefficie Fall Creek
Preference factor for NH Jenny Creek

Rate constant: biological
Rate constant: biological
Rate constant: hydrolysis
First order nitrificationin
Deoxygenation rate consf
Minimum reaeration rate
Michaelis-Menton half sa
Michaelis-Menton half sa
Fraction of algal biomass
Fraction of algal biomass
Half-saturation coefficie

Half-saturation coefficie NGRS G



Case Studies

* CE-QUAL-W?2 Modeling Approaches - Processes

* Representing buoyancy compensating cyanobacteria
* Representing nitrogen fixing cyanobacteria
» Representing dissolved oxygen constraints on growth and mortality*

* CE-QUAL-W2 Modeling Approaches — Prescriptions
* Enhanced mixing (cove)

Barrier Curtain®

Algaecide Treatment*

Reservoir Drawdown*

Hypolimnetic oxygenation*

* Not covered herein



CE-QUAL-W?2 Phytoplankton Logic

 Complex representation * Other water quality interactions
* Multiple algae groups * Temperature dependent
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CE-QUAL-W?2 Phytoplankton Logic

 Complex representation * Other water quality interactions
* Multiple algae groups * Temperature dependent
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Vertical Movement of Cyanobacteria

e Gas Vesicles are used to
“control” location in water
column (formation, collapse,
protein or carbohydrate content,
environmental conditions,
colony size/structure, other)

* Preferential position
* Light
* Nutrients
* Competition

* Complex process




Settling Rate (S,= f(w, a;;a))

* Positive w,: negatively buoyant
* Negative or zero w,: positively buoyant or neutrally buoyant
e Subject to simulated aquatic system mixing processes

 CE-QUAL-W?2 — Existing Formulation

e Cyanobacteria or other floating phytoplankton: 0.0-0.05 m day-1 and can specify a
negative settling velocity (CE-QUAL-W2 2021)

 Settling rate = 0 (Smith and Kiesling 2019)
e CE-QUAL-W2 — Modified Formulation

e Use specific logic to model vertical migration (Overman 2019*) — new code
* Parameterization (field data) challenge

* Useful description of vertical migration models



Nitrogen Fixation Growth (S;= f(Kg4P))

* Limiting growth factor
* Light

K(Igz}/ar)/a agmax

* Phosphorus Wigee:
e Nitro gen Yo = temperature rate multiplier for rising limb of curve
. Yar = temperature rate multiplier for falling limb of curve
® SI | ICa Amin = multiplier for limiting growth factor (minimum of light. phosphorus. silica. and nitro-
gen)
. 12 h S ; : -1
* Heterocyst: specialized Kog = algal growth rate, sec

. . Kagmax = maximum algal growth rate. sec’”
fix nitrogen (N2)

where:

@; = phosphorus or nitrate + ammonium concentration, g m™
~ . —— -~ . . -3
P; = half-saturation coefficient for phosphorus or nitrate + ammonium, g m™




Nitrogen Fixation Growth (S;= f(Kg4P))

* CE-QUAL-W?2 - Existing Formulation

e Set half saturation coefficient for nitrate and ammonia to zero

* Allows
* Cyanobacteria to L A AN > = T
reproduce under low 2017
inorganic nitrogen 2019

concentrations

 Effectively incorporates
“load” due to N-fixation
consistent with algae
stoichiometry (=0.08)
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Prescription: Mixing a Cove

g ,Iron Gate-
Te

~ Reservoir = .

* Conceptualized isolating a cove sab J.ﬂ
using a barrier curtain widl ,/

e Used CE-QUAL-W?2 to assess
mixing required to disrupt
cyanobacteria

e Used vertical turbulent diffusion

coefficient as a metric after
Huisman et al. (2004)




Mixing Impacts on Microcystis

* Vertical mixing in the water column
reduces the advantages of colonization
and buoyancy compensation by
vacuolated cyanobacteria
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* If mixing is sufficient and depth great
enough, other species can outcompete
cyanobacteria
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Predicted response of Microcystis,
diatoms, and green algae as a function of
water-column depth and turbulent
diffusion (from Huisman et al. 2004).



Leveraging CE-QUAL-W?2

* Using the temporal and spatial
distribution of heat in the cove (eqtn

dT “max Zmax 4T Zmax
1 ) ) . (1) pC,K.(2) = I F(z) = — fz EF(z)dz + R(z)F(z) — J; H(2)l(z)dz
. .. Where:
e Ca I Cu I ate (S d d y d |ffu SIVI ty Vda I ues ( e qt N K(z)  =turbulent diffusion coefficient [square centimeters per second (cm?/s)]
. c _ _ z = depth [centimeters (cm)]
2) using simulated CE-QUAL-W?2 el
ve rt | Ca | te m pe rat ure p roﬂ I es o) = water density [grams per cubic centimeter (g/cm®)]
g =mass [grams (g)]
® Th ree con d |t | ONS :, i :f)ecific heat of water [Joules per.deg:ee Celsius per gram g (J/°C:g)]
= water temperature [degrees Celsius (°C)]
° N o Ccu rta | N t = time [seconds (s)]|
= water body surface area at depth z [square centimeters (cm?)]
e Curtain with no circulation = solar (short-wave) radiation at depth z [watts per square centimeter (W/cm?)]
: . . . = sediment heat exchange [Joules per square centimeter second (J/cm?:s)]
e Curtain with circulation = sulimantared atdeptics joid)

® CaICUIate tu rbUIent dlfoS|On Solving for the turbulent diffusion coefficient (K,(z)) yields:
coefficient (eqtn 2) and compare with
Huisman

(2) K.(2)= I J’ pth‘(z)dz+R(z)F’(z) f H(z)l(z)dzl IpC,,d F(z)l

(see Jassby and Powell (1975) and Benoit and Hemond (1974)
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Cyanobacteria Representation in CE-QUAL-
W?2: Considerations

* Blooms are often spatially heterogeneous (x-y-z) and dynamic through time
* Grid resolution is a key consideration, depending on objective

* Thermal stratification -> effectively modeled

* Water quality dynamics -> effectively modeled

* Species/group competition is challenging

e Can require considerable field observations to parameterize and test model
for cyanobacteria simulation

 Recommend starting big (seasonal responses) and refine as needed



Discussion
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