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Balancing Tradeoffs in Selection of a
Salinity Transport Model Constituent 

Specific Conductance 
(EC)

No data translation error

Non-conservative

Non-standard practice



Balancing Tradeoffs in Selection of a
Salinity Transport Model Constituent (cont’d) 

Practical Salinity

Subject to data translation 
error

Conservative

Standard practice



• Selecting EC as a transport constituent assumes a 
tradeoff relationship that hasn’t been formally 
evaluated

• How significant is error associated with EC’s non-
conservative behavior?

• How significant is error associated with data 
translation between EC and practical salinity?

Balancing Tradeoffs in Selection of a
Salinity Transport Model Constituent (cont’d) 



Practical Salinity Exhibits Conservative Behavior



Relationship Between Practical Salinity and 
Specific Conductance is Source-Dependent



An alternative to Practical Salinity…



Limiting Equivalent Conductance1,2 

1 Commonly referred to as “computed” conductance
2 Miller et al., 1988. Specific Conductance: Theoretical Considerations and 
Application to Analytical Quality Control, U.S. Geological Survey Water Supply 
Paper 2311.

𝜅 = ෍

𝑖

𝛼𝑖 ∗ 𝜆𝑖 ∗ 𝐶𝑖  

𝜅 = limiting equivalent conductance of sample
𝛼𝑖 = fraction of the ith ionic constituent present as the free ion
𝜆𝑖 = limiting equivalent conductance of the ith ionic constituent
𝐶𝑖 = mass concentration of the ith ionic constituent

𝜆 is the conductance of an ionic constituent extrapolated to infinite 
dilution, where interaction between ions in solution disappear and 
the mobility of individual ions reaches a maximum.



Ion-Specific Constants for Calculating
Limiting Equivalent Conductance

Ion 

Constituent

α λ (μS/cm 

per mg/L)

Br- 0.99 0.98
Cl- 0.99 2.15

SO4
2- 0.93 1.66

HCO3
- 0.98 0.73

Na+ 0.98 2.18
Ca2+ 0.88 2.97
Mg2+ 0.88 4.36

K+ 0.98 1.88



Limiting Equivalent Conductance
has Conservative Behavior



𝜅 can be estimated for seawater
as a function of Specific Conductance

𝜅

𝜅𝑠
= 𝐿𝑜 + 𝐿1 ∗ 𝑅0.5 + 𝐿2 ∗ 𝑅 + 𝐿3 ∗ 𝑅1.5 + 𝐿4 ∗ 𝑅2 + 𝐿5 ∗ 𝑅2.5 

𝜅   = limiting equivalent conductance of sample
𝜅𝑠 = limiting equivalent conductance of seawater = 75,636 µS/cm
𝐿𝑖 = model constants where ∑Li = 1
  Lo = 0.0003; L1 = -0.0062; L2 = 0.7237;
  L3 = 0.3935; L4 = -0.1851; L5 = 0.0738
R = conductivity ratio (sample EC ÷ seawater EC)

This equation was derived by substituting functional relationships 
between ion concentrations and R (not shown here) into the 

mathematical definition of 𝜅

Assume 𝜅 = EC when EC < 250 µS/cm





κ & Specific Conductance Comparison



κ vs. Specific Conductance
Comparison of Conductance-Based and Mass-Based Estimates



Comparison of Conductance-Based
 and Mass-Based Estimates of 𝜅 



Relationship Between 𝜅 and Specific 
Conductance is not Source-Dependent



Balancing Tradeoffs in Selection of a
Salinity Transport Model Constituent 

Limiting Equivalent 
Conductance (𝜅)

No data translation error

Conservative

Non-standard practice



• Practical salinity (PSS-78) is a conservative salinity measure.
– However, relationship between PSS-78 and EC is source dependent

– Need to account for tradeoff between non-conservative behavior of EC 
and uncertainty associated with translating between EC and PSS-78

• The choice between PSS-78 and EC as a simulation constituent 
must account for tradeoff between conservative behavior and 
translation uncertainty.

• Limiting Equivalent Conductance (κ ) is a conservative salinity 
measure.
– Relationship between κ and EC is approximately independent of 

source in the Delta; thus, limited translation uncertainty

– This measure shows promise for use as a simulation constituent for SF 
Estuary and the Delta

Findings
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