Conservative Mixing: Implications for Selecting Salinity Transport Model Constituents in the San Francisco Estuary (Part I)

CWEMF Annual Meeting Session 32 Folsom, CA April 19,2023

Paul Hutton, Ph.D., P.E. Sujoy Roy, Ph.D. Tetra Tech, Inc.

CLEAR SOLUTIONS

Motivation & Introductory Remarks

• Purpose

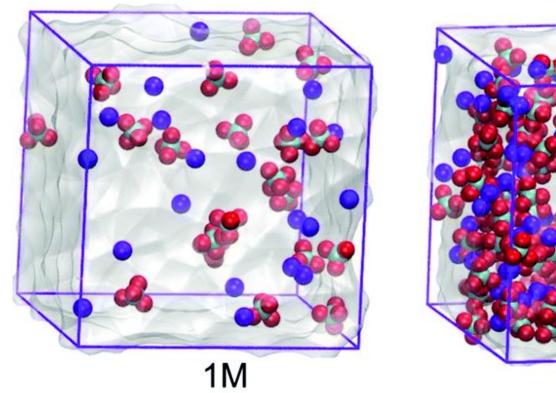
TETRA TECH

- Explore implications of EC non-conservative behavior for modeling Delta salinity transport
- Raise some questions for future research on the implications of modeling transport of other conservative and non-conservative constituents in the Delta
- Two-part presentation
- Salt (i.e. conservative) transport is calibrated to EC in the DSM2 model
- Standard modeling practice addresses EC non-conservative behavior by translating EC into Practical Salinity
- However, Practical Salinity has practical limitations in characterizing waters with complex ionic signatures

Motivation & Introductory Remarks (cont'd)

- EC non-conservative behavior is demonstrated here using measured and simulated data
 - theoretical mixing analysis
 - DSM2 output example

TRA TECH


- A promising alternate to Practical Salinity is discussed in Part 2 of this presentation
- This work has been accepted for publication in June 2023 edition of San Francisco Estuary & Watershed Science

Specific Conductance (EC) Exhibits Non-Conservative Behavior

8M

complex world)

CLEAR SOLUTIONS

TRA TECH

- As salt concentration in a water sample increases,
 - the mobility of individual ions in the sample decreases and
 - the ability of individual ions to conduct electricity decreases

Credit: da Silva et al. (2022) DOI: 10.1039/D1MA00890K (Paper) Mater. Adv., 2022, 3, 611-623

Balancing Tradeoffs in Selection of a Salinity Transport Model Constituent

Specific Conductance (EC)

TRA TECH

No data translation error

Non-conservative

Non-standard practice

complex world

Balancing Tradeoffs in Selection of a Salinity Transport Model Constituent (cont'd)

TRA TECH

Practical Salinity

Subject to data translation

error

Conservative

Standard practice

complex world

Balancing Tradeoffs in Selection of a Salinity Transport Model Constituent (cont'd)

 Selecting EC as a transport constituent assumes a tradeoff relationship that hasn't been formally evaluated

TRA TECH

- How significant is error associated with EC's nonconservative behavior?
- How significant is error associated with data translation between EC and practical salinity?

Seawater Mixing Ratio Steady State Two-Source Mixing

Consider the following mixing relationship:

$$S_n = S_s * M_n + S_f * (1 - M_n)$$

where:

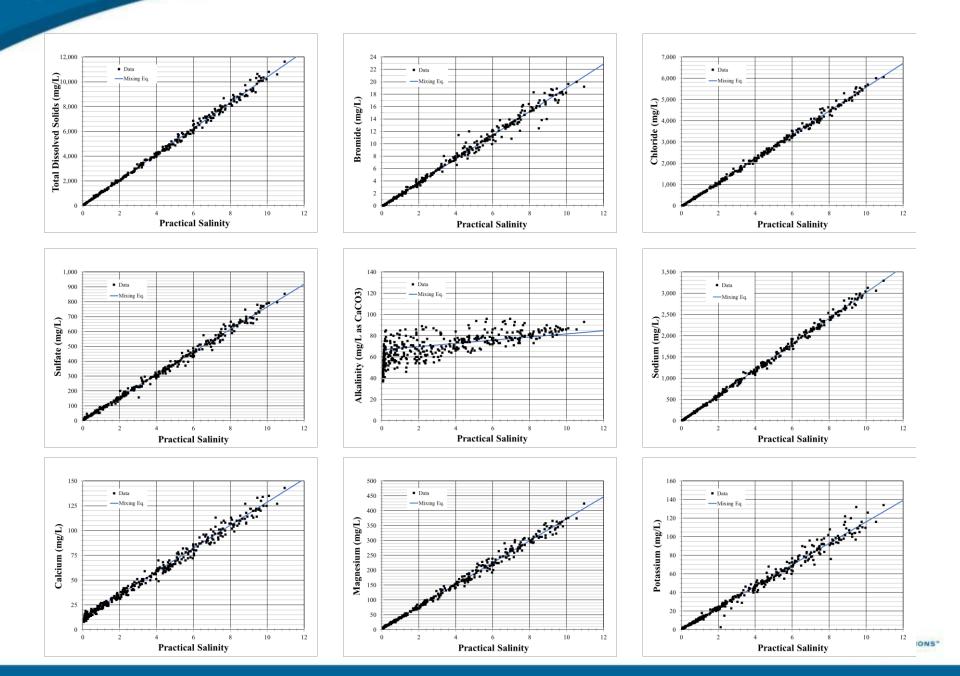
TRA TECH

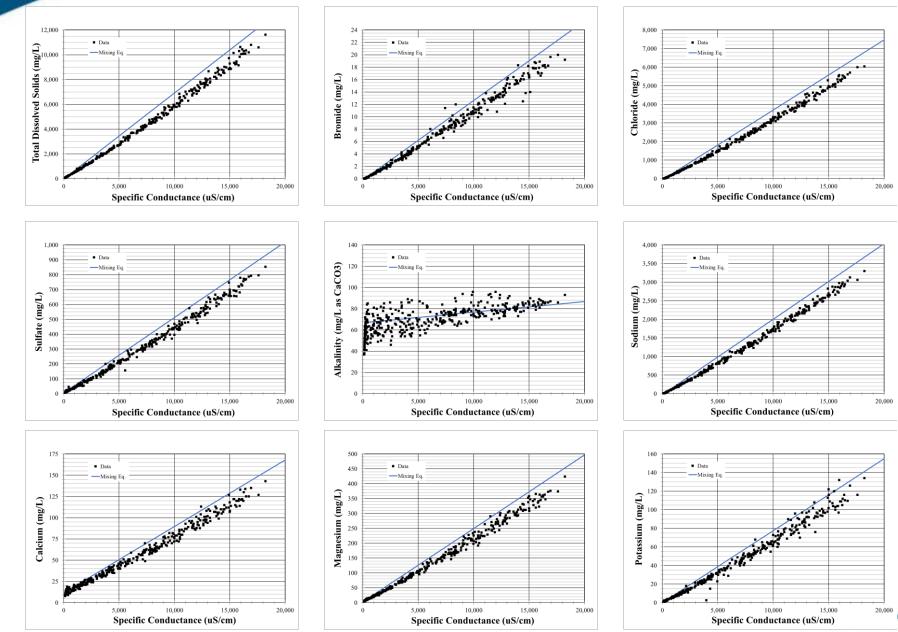
- S_n = constituent value for sample *n* S_s = seawater end member constituent value
- S_f = freshwater end member constituent value

 M_n = seawater mixing ratio ($0 \le M_n \le 1$) for sample

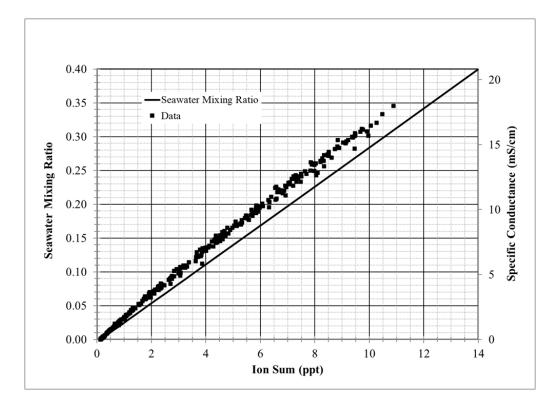
Rearranging terms and solving for M_n yields:

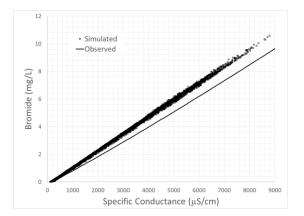
$$M_n = \frac{S_n - S_f}{S_s - S_f}$$

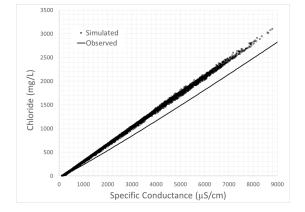


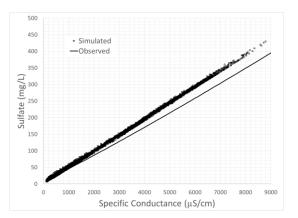

Seawater Mixing Ratio Matrix Steady State Two-Source Mixing (cont'd)

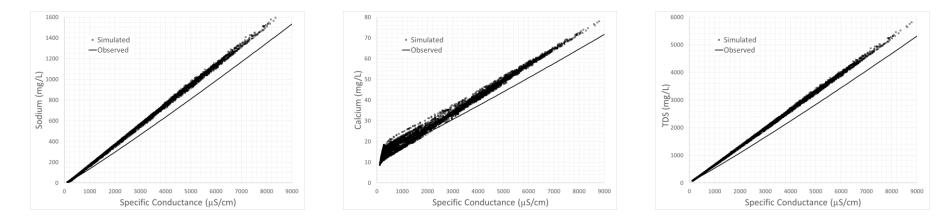
High Salinity Seawater %	Low Salinity	Mixing Ratio	EC (uS/cm)	PSS-78	N .	6			C	604	A 11 - 11 - 11		TDC	lon Sur
			,		Na	Са	Mg	K	Cl	SO4	Alkalinity	Br	TDS	
100	0	1.00	52300	35.00	10600	420	1295	405	19630	2660	119	67.00	36300	351
90		0.90	47095	31.51	9542	379	1166	365	17670	2396		60.31	32685	316
80		0.80	41890	28.02	8484	339	1038	324	15709	2131		53.62	29069	281
70		0.70	36685	24.54	7427	298	909	284	13749	1867	104	46.93	25454	246
60		0.60	31480	21.05	6369	257	781	244	11788	1603	98	40.23	21838	211
50		0.50	26275	17.56	5311	217	652	203	9828	1339	93	33.54	18223	176
40		0.40	21070	14.07	4253	176	523	163	7867	1074	88	26.85	14607	141
30		0.30	15865	10.59	3195	136	395	123	5907	810		20.16	10992	106
20		0.20	10660	7.10	2138	95	266	83	3946	546		13.47	7376	71
10		0.10	5455	3.61	1080	54	137	42	1986	282		6.78	3761	36
9		0.09	4935	3.26	974	50	125	38	1790	255	72	6.11	3399	32
8		0.08	4414	2.91	868	46	112	34	1594	229	71	5.44	3037	29
7		0.07	3894	2.56	762	42	99	30	1398	202	71	4.77	2676	25
6	94	0.06	3373	2.22	657	38	86	26	1202	176	70	4.10	2314	22
5	95	0.05	2853	1.87	551	34	73	22	1006	150	70	3.43	1953	18
4	96	0.04	2332	1.52	445	30	60	18	810	123	69	2.76	1591	15
3	97	0.03	1812	1.17	339	26	47	14	614	97	69	2.09	1230	11
2	98	0.02	1291	0.82	234	22	35	10	417	70	68	1.43	868	8
1	99	0.01	771	0.47	128	18	22	6	221	44	68	0.76	507	4
0.9	99.1	0.01	718	0.44	117	17	20	6	202	41	67	0.69	470	2
0.8	99.2	0.01	666	0.40	107	17	19	5	182	39	67	0.62	434	2
0.7	99.3	0.01	614	0.37	96	16	18	5	163	36	67	0.56	398	3
0.6	99.4	0.01	562	0.33	85	16	17	4	143	33	67	0.49	362	3
0.5	99.5	0.01	510	0.30	75	16	15	4	123	31	67	0.42	326	3
0.4	99.6	0.00	458	0.26	64	15	14	4	104	28	67	0.35	290	2
0.3	99.7	0.00	406	0.23	54	15	13	3	84	25	67	0.29	253	2
0.2	99.8	0.00	354	0.19	43	14	11	3	65	23	67	0.22	217	2
0.1	99.9	0.00	302	0.16	33	14	10	2	45	20	67	0.15	181	:
0	100	0.00	250	0.12	22	14	9	2	25	17	67	0.09	145	1



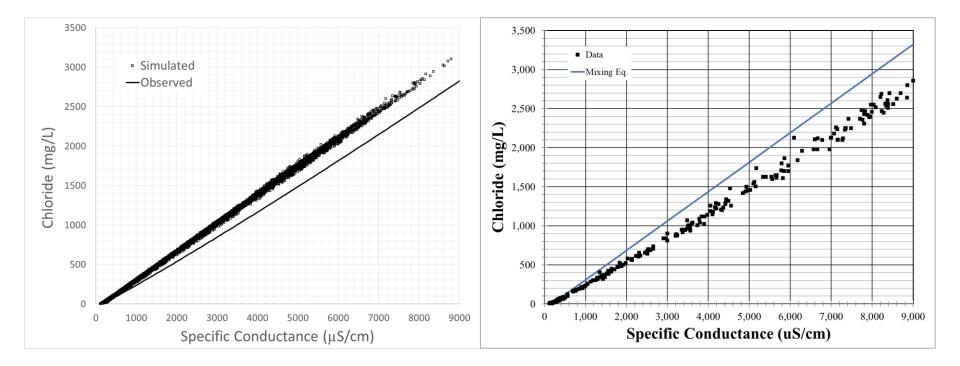

IONS"

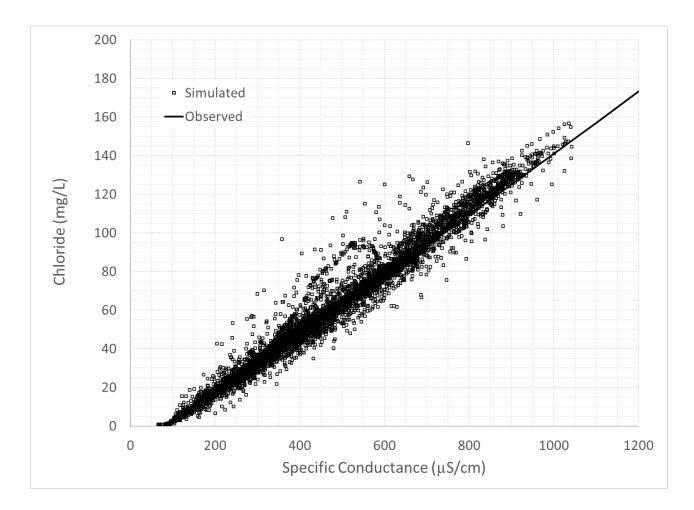

Deviation of Specific Conductance from Conservative Behavior Steady State Two-Source Mixing




 Using EC as a measure of transport in the estuary artificially amplifies the actual seawater mixing ratio (i.e., it suppresses the dilution effect associated with freshwater flows to the estuary).

DSM2 Results Confirm Mixing Analysis Conclusions Results at Antioch (RSAN007)




DSM2 Results Confirm Mixing Analysis Conclusions Results at Antioch (RSAN007) (cont'd)

CLEAR SOLUTIONS

DSM2 Results at Stockton (RSAN058) Consistent with San Joaquin River EC-Cl Relationship

TETRA TECH

complex world

Potential Impacts of Biased Dispersion Factors

- Impact by Region?
 - Suisun Bay

TETRA TECH

- Suisun Marsh
- Western Delta
- Interior Delta (what about under extreme seawater intrusion?)
- Impact by Constituent?
 - Salt ions
 - Dissolved nutrients
 - Dissolved organic carbon
 - Silica
 - Temperature
 - Dissolved oxygen
 - Chlorophyll
- Impact by Fingerprint?
 - Seawater
 - Other sources

Acknowledgements

RA TECH

- This work was made possible through funding from the State Water Contractors.
- The authors acknowledge Arushi Sinha's contribution to this work through data assembly and screening.