Application of the Practical Salinity Scale to the Waters of San Francisco Estuary

CWEMF Annual Meeting Session 32 Folsom, CA April 19, 2023

Sujoy Roy, Ph.D. Paul Hutton, Ph.D., P.E. Tetra Tech, Inc.

1

PSS-78 Equation ^{1,2}

transforms EC measurements into salinity estimates assuming T=25°C and atmospheric pressure

 $S = K_o + K_1 * R^{0.5} + K_2 * R + K_3 * R^{1.5} + K_4 * R^2 + K_5 * R^{2.5}$

where:

- S = practical salinity (2 < S < 42) and seawater \approx 35
- R = conductivity ratio (sample EC ÷ seawater EC)
- K_i = fitting constants, $\sum K_i$ = 35 (for uncorrected scale)
- S, a dimensionless term, is linearly related to the mixing ratio of freshwater and seawater (unlike EC).
- We assume seawater EC = 52.3 mS/cm

PSS-78 Equation (cont'd)

- Widely used as an EC-based measure of salinity in oceans and estuaries
- Equation "...should be used with caution in waters that have a chemical composition different from standard seawater" (UNESCO, 1981)
- Hill et al. (1986) presents a standard correction to extend the applicability of PSS-78 below a value of 2.
 - Based on dilutions of standard seawater with deionized water
 - Strictly applicable to waters that have the same proportional ionic makeup as seawater

Mineralogy of Primary Water Sources

source compositions different from seawater

Service Layer Credits: Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community

4

Findings

- PSS-78 is valid in waters dominated by seawater intrusion as well as in waters dominated by the Sacramento River
- PSS-78 is valid well below the recommended lowerbound value of 2.0
- PSS-78 under-estimates salinity in waters dominated by the San Joaquin River or agricultural drainage

Number of EC and Ion Data Points by Monitoring Location

EC/lon	Western Delta & Downstream Bays				Sacramento River			San Joaquin River (SJR)				Agricultural Drainage
	Sac. R. @ Mallard	Sac. R. @ Chipps	SJR @ Jersey	Σ	Sac. R. @ Hood	Sac. R. @ Greene's	Σ	SJR near Vernalis	SJR @ Maze	SJR near Vernalis	Σ	Various Locations
	1986 - 2019	2019 - 2019	1990 - 1995		1982 - 2020	1983 - 1998		1982 - 2005	1988 - 1994	2005 - 2020		1990 - 2001
EC	382	3	20	405	445	156	601	341	62	140	543	781
Br⁻	335	3	20	358	297	80	377	280	38	140	458	781
Cl-	381	3	20	404	444	154	598	339	62	140	541	781
SO ₄ ²⁻	377	3	20	400	444	151	595	340	62	140	542	781
Alkalinity	376	3	20	399	438	153	591	340	61	140	541	781
Na⁺	378	3	20	401	442	152	594	338	59	140	537	781
Ca ²⁺	379	3	20	402	441	155	596	338	56	140	534	781
Mg ²⁺	374	3	20	397	442	154	596	338	60	140	538	781
K ⁺	377	3	20	400	436	155	591	330	61	139	530	781

Methods

Calculation of Mass-Based Salinity (Ion Concentration Sum)

- Salinity calculated as the sum of 8 major ions
 - Anions: bromide (Br⁻), chloride (Cl⁻), sulfate (SO₄²⁻) and alkalinity
 - Cations: sodium (Na⁺), calcium (Ca²⁺), magnesium (Mg²⁺) and potassium (K⁺).
 - Missing ion data filled using EC-based regression equations
 - Samples reasonably charge-balanced
 - Alkalinity converted to equivalent bicarbonate (HCO_3^{-})
- Ion sum converted from mg/L to ppt by accounting for sample density
- Ion sum compared with EC-based salinity estimates to evaluate fidelity of PSS-78 to measured data
 - Ion Sum (units of ppt) ≈ Practical Salinity

Fidelity of Ion Concentration Sum to PSS-78: Western Delta & Downstream Bay Data

Fidelity of Ion Concentration Sum to PSS-78: Sacramento River Data

Ion Concentration Sum vs. EC for San Joaquin River (left) & Agricultural Drainage (right) Data

PSS-78 under-estimates salinity

$$S = \omega_1 * EC + \omega_2 * EC^2$$

where:

TETRA TECH

S = corrected practical salinity

 ω_i = fitting constants

Approximate applicable range is $130 \,\mu$ S/cm – $1700 \,\mu$ S/cm

Constant	San Joaquin River	Agricultural Drainage
ω_1	5.08E-4	4.99E-4
ω_2	5.07E-8	3.81E-8

Fidelity of Ion Concentration Sum to Corrected PSS-78: San Joaquin River Data

Fidelity of Ion Concentration Sum to Corrected PSS-78: Agricultural Drainage Data

Fidelity of Ion Concentration Sum to Corrected PSS-78

Jones Pumping Plant (SJR Dominant)

14

Fidelity of Ion Concentration Sum to PSS-78 Jones Pumping Plant (Seawater Dominant)

40% 0.70 0.70 35% Data 30% 0.60 0.60 -- Practical Salinity Scale Leduency 20% 15% JR Corrected Practical Salinity Scale 0.50 0.50 **Practical Salinity** (**bd**) **uns** 0.30 0.40 0.30 10% 0.20 0.20 5% 0.10 0.10 0% < -13 -9 to -7 -7 to -5 -5 to -3 -3 to -1 -1 to 1 1 to 3 3 to 5 5 to 7 9 to 11 7 to 9 V -13 to -11 -11 to -9 11 to 13 13 0.000.00200 400 600 800 1.000 0 1,200 Percent Difference Specific Conductance (uS/cm)

Inverse PSS-78 Equation

$$R = K'_0 + K'_1 * I^{0.5} + K'_2 * I + K'_3 * I^{1.5} + K'_4 * I^2 + K'_5 * I^{2.5}$$

where:

TRA TECH

R = conductivity ratio (sample EC ÷ seawater EC) I = practical salinity ratio (sample salinity ÷ seawater salinity) K'_i = fitting constants, $\sum K'_i$ = 1.0 (for uncorrected scale)

Inverse PSS-78 Model Constants Seawater Relationship

	Inverse	Standard			
	PSS-78	Errors			
	Constants				
K ₀ ′	-0.0008	1.81E-5			
K ₁ ′	0.0190	3.29E-4			
K ₂ ′	1.2893	1.79E-3			
K ₃ ′	-0.4932	4.15E-3			
K ₄ ′	0.2706	4.27E-3			
K ₅ ′	-0.0850	1.62E-3			

Inverse Model

Compared with Ion Concentration Sum Data

Summary & Conclusions

- PSS-78 is well-aligned with mass-based measurements of salinity in the western Delta and downstream bays as well as the Sacramento River.
- PSS-78 underestimates salinity in the San Joaquin River at Vernalis as well as in-Delta agricultural return flows. We propose modified relationships between ion concentration sum and EC to address these deviations.
- Lewis (1980) cautions against using PSS-78 below practical salinity values of 2. However, we found the PSS-78 relationships (both uncorrected and corrected) to be valid over this range of salinity.

Summary & Conclusions (cont'd)

- Relationships between measured ion concentration sum and EC in the interior Delta are bounded by the PSS-78 and corrected San Joaquin River relationships.
- Inverse relationships were developed to estimate EC as a function of practical salinity.
- The relationship between PSS-78 and EC is not universal within the study area and assuming a singular relationship may introduce considerable error in monitoring and modeling applications.
- Given dynamic & complex source mixing in the interior Delta, using PSS-78 introduces significant challenges for interpreting transport model results.

Acknowledgements

- This work was made possible through funding from the State Water Contractors.
- The authors acknowledge Arushi Sinha's contribution to this work through data assembly and screening.