

— BUREAU OF — RECLAMATION

Factors Controlling Diurnal Temperature Stratification in Riverine Pools

B. Abban (USBR), T. Buxton (USBR), Y. Lai (USBR), N. Som (Cal Poly), E. Peterson (USBR)

Outline

- Overview
- Study objectives
- Field work & observations
- Statistical analyses
- Numerical modeling
- Conclusions

Thermal stratification in pools

Thermal heterogeneity is necessary for species to thrive

- warm water near surface/margins suitable for benthic invertebrates, juvenile salmonids, frogs, turtles etc
- cold water at depth suitable holding habitat for adult salmon, trout etc

Why we are interested?

- Managed flow releases can alter thermal diversity and affect mixing of flow layers
- We want to understand conditions that promote or prevent thermal stratification
- Is it possible to provide guidance for flow management?

Thermal stratification in pools

Mechanics of pool stratification not fully described yet

Complex and controlled by many factors

□Past studies attribute stratification to:

- Retention of cold water at night
- Low air temperature and solar input
- Cold hyporheic flows
- Low turbulence/conditions preventing mixing

Study Objectives

□Use a systemic approach to understand the mechanics of how stratification is formed, destroyed or prevented

Tease out the dominant factors

Provide guidance on promoting or preventing stratification

□Focus on pools trinity river

Field Work – Two Sites

Field Work (Jun-Nov 2020)

Bathymetric Surveys

- Total Stations
- Real Time Kinematic GPS
- Sonar
- Photogrammetry SfM (above surface and underwater)
- Lidar

□Flow Stage, Discharge and Temperature Measurement

- Pool inlet, body, outlet
- Hobo sensors (15-min measurements)
- Stage-discharge relationship

□ Repeated 3D Velocity Measurements

- Nortek Acoustic Doppler Velocimeter
- At various depths
- Instantaneous processed to get time-averaged
- Total 610 time-averaged at 151 vertical profiles

Field Work

Field Work - Observations

Upper Trinity pool body measurements during day time

- Stratification was observed only at Upper Trinity pool site
- No stratification was observed at Pear Tree site entire study period

Field Work - Observations

Diurnal change in stratification

Statistical Analyses

Standard Procedure for Statistical Model Selection using R

Continuous Response Variable

• Daily maximum degree of stratification (temperature range in a vertical profile)

□ Potential Explanatory Variables

- Daily air temperature differential (DATD)
- Daily inlet water temperature differential (DIWTD)
- Mean daily inlet water temperature (MDIWT)
- Daily average flow (Qavg)
- Day length (DL)
- Sun exposure (SE)

□Akaike Information Criterion (AIC) used for candidate models

- DATD, Qavg, DATD:Qavg
- DIWTD, Qavg, DIWTD:Qavg

Statistical Analyses

Increasing discharge reduces degree of stratification and relationship

Field Work - Observations

Numerical Modeling

3D Numerical Model, U²RANS (Lai et al., 2003)
• Reynolds-Averaged Navier Stokes Equations

• Energy conservation for water temperature:

$$\frac{\partial T}{\partial t} + \frac{\partial (U_j T)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\alpha \frac{\partial T}{\partial x_j} - \overline{T' u_j} \right) + \frac{q_s}{\rho C_P}$$

Turbulent thermal diffusion:

$$-\overline{\mathsf{T}'\mathsf{u}_{j}} = \frac{v_{t}}{\mathsf{P}_{\mathsf{rt}}} \frac{\partial \mathsf{T}}{\partial \mathsf{x}_{j}}$$

We ultimately neglected heat exchange at surface

Numerical Modeling

Model Prediction

Lines – Model; Dots – Observed;

Numerical Modeling

□Findings

- 3D model can be used to evaluate if there will be stratification
 - Replicates formation and destruction of stratification
 - Model also predicts no stratification when none is observed in field
 - Can be used to provide guidance on critical flows for stratification

• Primary cause of stratification

- Temperature differential
 - Incoming flow
 - Indirect influence of air temperature on inflow
- Low flow discharge/velocities
 - Prevent turbulent mixing
- Cold flows at night
 - Cause mixing with denser flows sinking buoyancy effects
- Heat fluxes at pool surface domain only had a minor impact on stratification

Pool geometric properties affect critical flow for stratification

Thank you!

— BUREAU OF — RECLAMATION

DOI: 10.1002/hyp.14749 Buxton et al., 2022