Asymmetric quantification of streamgroundwater interaction based on Stream Aquifer Flow Exchange (SAFE) method

G. Kourakos^a, H.J. Morel-Seytoux^b, C. Dogrul^c, T. Kadir^c, H.E. Dahlke^a

a) Department of Land Air and Water Resources, University of California Davis

b) Hydroprose International Consulting

c) California Department of Water Resources

Overview

- Stream Aquifer Flow Exchange (SAFE)
- Improvements on the disconnection criterion
- Asymmetric quantification of stream-groundwater interaction
- Examples
 - Test case
 - C2VSim
- Conclusions

Traditional approach (RP)

$$Q_s = \frac{K_{cl}}{e_{cl}} LW_{per}(h_s - h_{gw})$$

- Issues with the traditional approach:
 - SW-GW predominately vertical process
 - Riverbed conductance K_{cl} has no physical meaning. Depends on hydrology conditions which may change over time
 - Wetted perimeter is constant during the simulation
 - Disconnection occurs at the bottom of the riverbed

^{*}We denote as RP the current implementation in Modflow, IWFM, GSFLOW and others and not the Modflow RIV package

Stream Aquifer Flow Exchange (SAFE)

 $Q_s = 2L \Gamma K_H (h_s - h_{gw})$

- Calculates stream-aquifer exchange as a function of the flow resistance between the stream and a point at the aquifer where the flow can be assumed horizontal
- The resistance is not uniform!
- The core of SAFE is the dimensionless coefficient Γ which represents the integral of resistances between the two crossections

L : River segment length K_H Horizontal hydraulic conductivity Γ : SAFE coefficient

Traditional disconnection criterion

• In practice the head difference is calculated as

$$h_{diff} = h_s - \max(h_{gw}, Elev_{rbed})$$

- The RP approach assumes the disconnection occurs at the bottom of the riverbed and ignores the transition zone due to mounding
- It is known that this approach underestimate the infiltration rate

SAFE disconnection criterion

• The disconnection depends on the incipient desaturation

$$h_{diff} = h_s - \max(h_{gw}, h_{incip})$$

- river width
- thickness of the aquifer
- thickness of the clogging layer
- conductivities of the clogging layer and of the aquifer
- entry pressure of the aquifer (drainage)
- ponded depth over the riverbed and aquifer head at some distance from the riverbank

 $h_{incip} = h_s - \frac{W_{per}}{2K_{\mu}\Gamma}K_{cl}\frac{h_{stg} + e_{cl} + h_{ce}}{e_{cl}}$

Stream is still connected to aquifer even if h_{gw} is below riverbed because $h_{gw} > h_{incip}$ h_s : Stream head W_{per} : Wetted perimeter K_H : Hydraulic conductivity Γ : SAFE coefficient K_{cl} : Riverbed conductivity e_{cl} : Riverbed thickness h_{stg} : Stream stage h_{ce} : drainage entry pressure

Asymmetric quantification of stream-aquifer flow exchange

 SAFE allows the calculation of a different flow resistance on the left and the right

 $Q_s^L = L\Gamma^L K_H (h_s - h_{gw}^L)$

 $Q_s^R = L\Gamma^R K_H (h_s - h_{gw}^R)$

- h_{gw}^L , h_{gw}^R can be calculated
 - By the finite element solution
 - By local flow mass balance

Hypothetical application

- Simulated with RP and SAFE
- With and without pumping
- Groundwater head at stream nodes is higher with SAFE
- Stream stage difference is negligible but SAFE solution is lower

Hypothetical application

Comparison of **Seepage discharge** (SPD) between SAFE and RP

- RP appears to overestimate SPD for the gaining parts of the streams and underestimate the loosing and disconnected part of the streams
- The low values at the first node of reach 1 and 2 and last of reach 3 is due to the boundary conditions. The area of influence is approximately half compared to the nearby nodes

Positive seepage discharge (SPD) implies <u>Gaining</u> from groundwater

Asymmetric SPD mapping

- When the left (red) line is at the left side of the river (looking downstream) the distance to river is proportional to Q^L_S (gaining from groundwater).
- For the river segments that run along the main flow direction (north to south) $Q_s^L \sim Q_s^R$
- For the segments that run diagonally there is significant difference between left and right

Central Valley – C2VSim

C2VSim:

California Central Valley Groundwater-Surface Water Simulation Model

- Coarse Grid version (1,392 elements, ~30 min runtime)
- Fine Grid version (32,537 elements, ~6 hours runtime)
 - 110 Stream reaches
 - 4634 Stream nodes
 - Simulated with Stream package 4.2
- We run SAFE on both versions, but we show only the fine grid results

Central Valley – C2VSim

Cumulative comparison over stream nodes of stream aquifer interaction SAFE and RP

- The RP monthly variation is considerably higher than SAFE
- Yearly volumes are very similar
- Overall SAFE method calculates smaller extreme values
- The difference between Dec 2003 and Jan 2004 is 700 MCM (567 TAF)

Central Valley – C2VSim

Comparison between SAFE and RP simulation for the last time step

- 40% and 30% of stream node are gaining for SAFE and RP respectively
- SAFE groundwater heads are generally higher than RP
- Stream head is very similar for both methods
- SAFE SPD is less variable from node to node

Central Valley – C2VSim

Central Valley – C2VSim

Comparison between SAFE and RP simulation for the last time step for three reaches

C2VSim Asymmetric quantification

Cumulative comparison between left and right stream-aquifer interaction

C2VSim Asymmetric quantification

Typical Asymmetric stream aquifer interaction responses at stream node level:

 One side consistently contributes more to stream or aquifer

 One side shows higher variability

 The total volume is split evenly between left and right

San Joaquin

Conclusions

- Implement the SAFE method in IWFM code (not yet released)
- Used an improved disconnection criterion
- Extend SAFE method to quantify asymmetric stream-aquifer interaction
- The methodology was applied to a real case study

Future work

- Changes are going to be incorporated into a public release
- Improve the overall converge of the model
- Improve the simulation of the unsaturated connection