Map-Based Open-Source Stream Depletion Tools

Assessing impacts and exploring options with rapid stream depletion estimates

Session 28: Capturing Nuances of Surface Water/Groundwater Interactions to Quantify Stream Depletion Wednesday April 19th, 8 - 9:45 am PT

Jessica Rogers, Ph.D.; Gilbert Barth, Ph.D.; Doug Hayes; Mashrur Chowdhury (all with SSP&A)

Overview

- Objective
 - Estimate stream depletion impacts of proposed diversion transfers
 - Provide learning opportunities to improve the process
 - Better questions lead to better solutions...
- Methods: analytical or numerical evaluation
 - Glover Balmer and Theis
 - Groundwater model with surface water representation
- Tool: Open-source map-based interface
 - Menus
 - Standardized format
 - Maps, graphs and tables

Proposed Transfer

Move From

- Location and formation
- Type of use
- Quantity
- Return flow
- Move To

TECHNICAL MEMORANDUM OFFICE OF THE STATE ENGINEER HYDROLOGY BUREAU

S.S. Papadopulos & Associates,

 $\Sigma^2 \Pi$

What Does the Interface Need to Do?

Analytical: Glover Balmer

- Proportion of pumped which is captured stream flow
- Analytical Depletion Function (*Zipper et al.*, 2019) approach
 - Streams broken into segments
 - Aggregate Glover Balmer from each included segment

Analytical: Theis

- Theis with river boundary condition:
 - Shortest well-to-river distance
 - River perpendicular to shortest distance
- Analytical solution
 - Independent "Theis Zones"
 - Pumping side of river
 - Constant hydraulic properties
- Drawdown output
 - Grided timeseries
 - Timeseries at observation points

Numerical Evaluation

- Calibrated groundwater flow model
- Review of superposition assumptions
- Review objectives (isolated vs. projected)
- Baseline simulation
 - No pumping
 - Existing pumping
- Transfer simulation: baseline plus proposed pumping
- Net results
 - Drawdown
 - Depletion

2 S.S. Papadopulos & Associates, Inc.

Interface Schematic

Ani

The Analytical Interface (Ani)

An Analytical-Solution Interface for Streamlining New Mexico OSE Evaluation of Transfer Applications in Basins Without Numerical Models

Created for

The New Mexico Office of the State Engineer

Methods

Ani Example

- 10-year tranfer
- Two Move-From and Move-To
- Different: pumping, return, sides,
 properties,

Methods

Total River Impact

Methods

Total Storage Impact (residual term)

Drawdown Time Series

Ani (Analytical Interface)

- Upper Pecos Basin
- Move-From (left)
- Move-To (right)
- Theis results: mounding and drawdown contours

Mimbres Interface

- Move-From (left)
- Move-To (right)
- Numerical model results
 - mounding (blue shading)
 - drawdown (red shading)
- Purple shading indicates existing pumping
- Development continues...

The Mimbres Basin Interface (MBI)

A Transfer Evaluation Interface for the Mimbres Basin

Created for The New Mexico Office of the State Engineer

Mimbres Interface

- Move-From (left)
- Move-To (right)
- Numerical model results
 - mounding (blue shading)
 - drawdown (red shading)
- Purple shading indicates existing pumping
- Development continues...

NAD83 / UTM zone 13N: 205067.87,3611695.14

Existing Interfaces

(Includes ongoing development)

Existing Interfaces

(Includes ongoing development)

- Numerical
 - Lea County
 - Estancia
 - Mimbres
- Analytical (Ani)
 - Carlsbad
 - Upper Pecos
 - Gila/San Francisco
- Hybrid

 $\Sigma^2 \Pi$

Carlsbad

S.S. Papadopulos & Associates, Inc.

Other Features/Controls

Contouring Extents

- Select limits drawdown contours
- Reduce computation time
- Decrease interval

Basin Upper Pecos V				
Wells				
MOVE-FROM MOVE-TO	OBSERVATION			
Add Remove	<u>Name</u> :			
A	UTM-83 🗸 X:	0		
	(meters) Y:	0		
	Q (AFY):	0		
	Return Flow %:	0		
	Trans. (ft2/d):	0		
	Storativity:	0		
-				
O Yes ● No				
Processing Options				
Transfer start year: 2022				
ADF Rivers: Both Rivers				
Theis Contour Interval (feet): 1				
Theis Contour Extent (miles): 3				
1	Theis Contour Output Ye	ars: 1 2		
	User-De	fine 3		
		5		
		6		
		8		
		9		

Contour Display Control

- Pumping wells across multiple Theis Zones
- Select individual zones for display

Map-based Hydraulic Properties

- Assign uniform properties within each "Theis Zone"
- Delineate extents with HUC-10, then simplify appropriately:
 - Surface geology maps
 - Local expertise

Hydraulic Properties

Interface uses properties at the pumping well location Operator has the ability to override the map-based values: effective T/S for the site Developingimplementing map-based effective T/S values

Basin				
Carlsbad 🗸				
Wells				
MOVE-FROM MOVE-TO	OBSERVATION			
Add Remove	Na	ame: from-1		
from-1	UTM-83 🗸	X: 574153.59		
	(meters)	Y: 3558635.09		
	Q (A	(FY): 0		
	Return Flov	w %: 0		
	Trans. (ft	2/d): 500		
	Storat	ivity: 0.05		
-	•			
Additional Well Details				
In Domain: tru			true	
Zone ID	:		21	
Zone Name: 1-Sout			outh	
Closest River: Black Rive				
Dist. to Black River: 15224			feet	
Dist. to Pecos River	-	54714	Teet	
Is this a temporary transfer?				
O Yes ● No				
Processing Options				
	Transfer s	tart year: 2022		
	AD	F Rivers: Both Rivers	~	
1	heis Contour Inter	val (feet): 1	~	
Theis Contour Extent (miles) 3			~	
Theis Contour Output Years: Year 40 Only				
User-Defined River Linearization				

👖 S.S. Papadopulos & Associates, Inc.

Refinements in progress

- Improving Theis implementation
 - Coordinate transformation for stream
 - Superposition of Theis segments (Zipper Theis)
- Continue expanding messaging (e.g., zone-limited drawdown)
- Effective hydraulic properties
- Other post-processing, evaluating other boundary conditions

- Identify the needs
- Develop the tool
- Test and document assumptions
- Train users (use and limitations)
- Employ: investigate, forensics and iterate
 - Refine the question...

Questions

gbarth@sspa.com