CALIFORNIA DEPARTMENT OF WATER RESOURCES

#### Evaluation of Feasibility of BCM Model to Simulate CALSIM3 Rim Inflows

Presenter: Jianzhong (Jay) Wang Modelling Support Office



Collaborators:

Hongbing Yin , Z. Richard Chen, Francis Chung, Hasan Mohammad, and James Polsinelli CWEMF 2023

## **BCM Model for California**

#### Basin Characterization Model

- regional water-balance model
- Lorraine E. Flint, Alan L. Flint, and Michelle A. Stern
- Snow Accumulation and Ablation Model SNOW-17
  - Eric Anderson
  - Also employed in SAC-SMA and SWAT
- A bedrock Layer is added
- Horizonal resolution: 270 m
- Temporary resolution: monthly (or daily)
- Input hydrometeorological data: p, Tmax, Tmin, and PET

# **Schematic of BCM Model Physics**

- Runoff/Recharge Process: Amount of water exceeding field capacity that enters bedrock, at a rate of Ks; excess water (rejected recharge) is added to runoff.
- Actual evapotranspiration Process: soil moisture, LAI, Kc, and PET
- Vegetation processes: LAI can change with monthly precipitation and vegetation type
- Sublimation Process: linearly related to PET

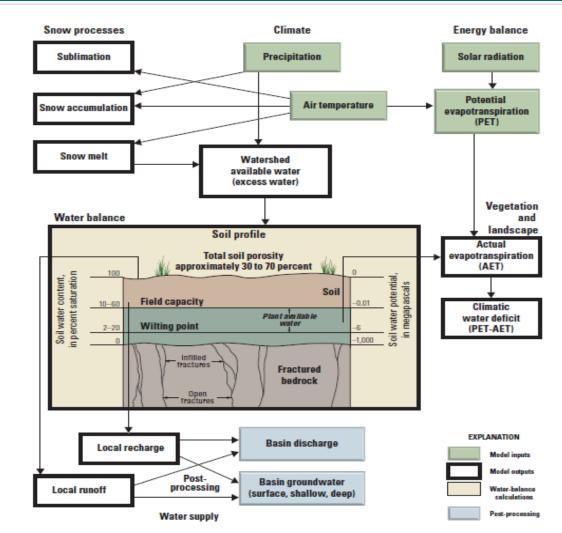
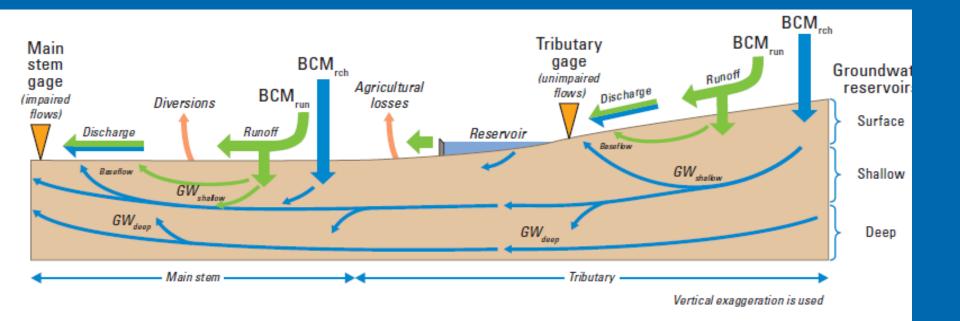
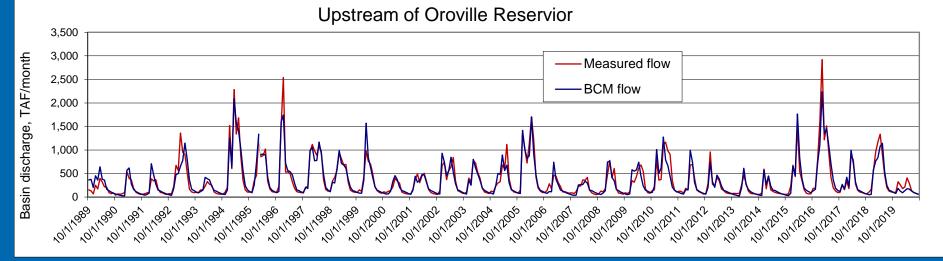



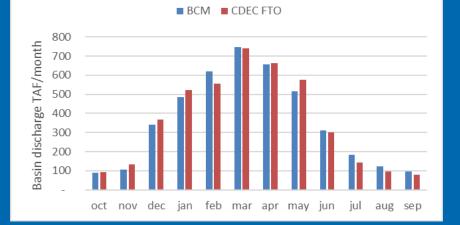

Figure 2. Inputs, outputs, and water-balance components of the Basin Characterization Model (BCM), version 8 (BCMv8).

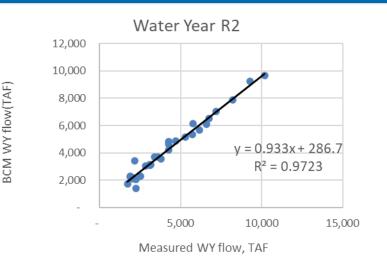
# **BCM Flow Routing and Calibration**

- Model Output: Runoff, Recharge, .....
- Routing based on a postprocess excel sheet
  - runoff can flow over the surface or move to the shallow zone
  - some recharge may return to the surface as base flow, and some recharge may be lost to the deep unsaturated zone



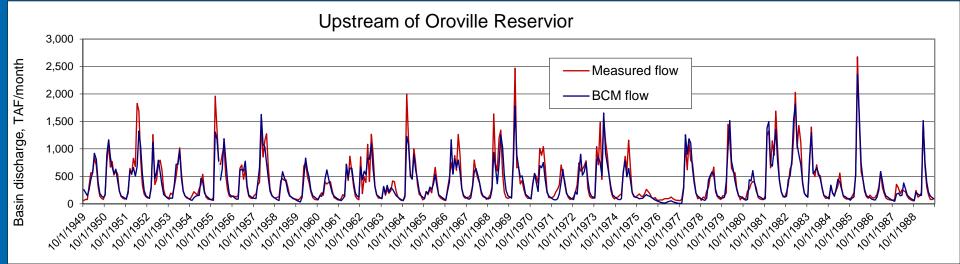

# **BCM Improvement by MSO**


- Monthly time scale, simulation of snow melt is a little tricky
  - Even if monthly averaged temperature equal to zero, snow melting still happens in some days of that month
- Rain-on-snow (ROS) process is not implemented in current BCM
  - Cause simulated monthly flow in some wet months too low
  - The Sierra Nevada, like other maritime mountain ranges worldwide, is prone to ROS
  - ROS is an efficient generator of runoff that can produce 50%–80% higher peak flows than spring snowmelt
  - After this processed added, simulated monthly flow is much more realistic
- Parameter Adjustment
  - Snow accumulation temperature, snow melt factor,...


## **Routed Flow to Oroville Reservoir**

| 0.89  |
|-------|
| 0.89  |
| -0.01 |
|       |









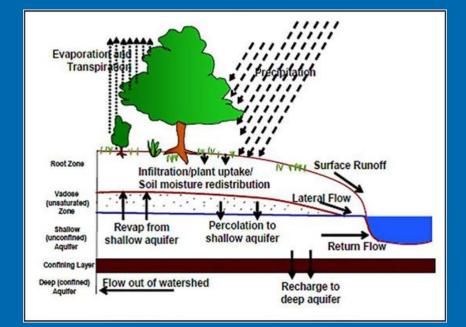

# **BCM Model Validation**

## • Monthly Inflow to Oroville Reservoir (1950-1989)



#### Performance in the validation and calibration period

| Validation: | Monthly r2: | 0.86 |              | Monthly r2: | 0.89  |
|-------------|-------------|------|--------------|-------------|-------|
|             | NSE:        | 0.85 | Calibration: | NSE:        | 0.89  |
|             | PBIAS:      | 5.55 | F            | PBIAS:      | -0.01 |

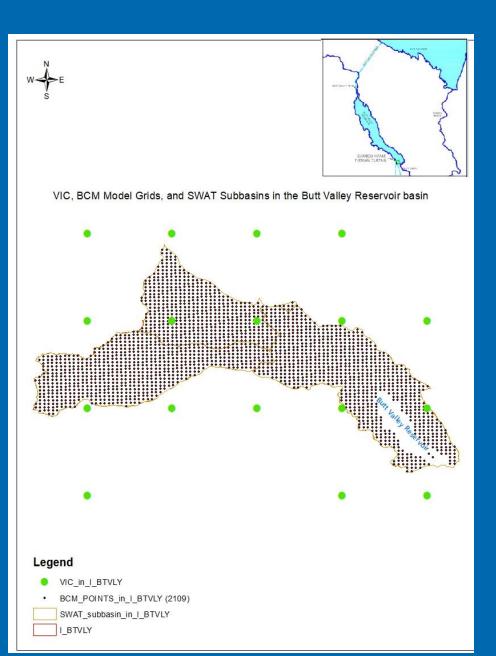

## **VIC Model**

- The VIC model, first developed in 1994 by UW, is a macroscale hydrologic model used to solve full water and energy balances.
- Distributed, 8<sup>th</sup> or 16<sup>th</sup> degree
- Daily or subdaily model
- Three vertical soil layers+ canopy
- Daily meteorological data: p, Tmax, Tmin,wind, air and vapor pressure, longwave and shore wave radiation
- Not applicable for small watersheds
- Output: *runoff, baseflow, ET, PET...*
- The routing model is a source-tosink model that solves a linearized version of the Saint-Venant equations

#### Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model Grid Cell Vegetation Coverage Cell Energy and Moisture Fluxes Variable Infiltration Curve $i = i_{\rm e} [1 - (1 - A)^{1/6})]$ nfiltration Capacity Canopy i<sub>o</sub>=i+P Layer 0 ΔWm w<sub>o</sub> Layer 1 0 A, A, Fractional Area $W_0 = W_0 + W_1$ Layer 2 Baseflow Curve ے Baseflow, B W<sub>s</sub>W<sub>2</sub><sup>c</sup> Layer 2 Soil Moisture, W2

# SWAT model

- The Soil & Water Assessment Tool is a small watershed to river basin-scale model used to simulate the quality and quantity of surface and ground water
- Daily or Subdaily time scale
- Four vertical soil layers
- Semi-distributed, HRU (Hydrologic Response Unit) or watershed based
- Simplified Snow-17, elevation band used
- Curve method or Green-Amp method for infiltration
- Daily gaged meteorological input data: p, Tmax, Tmin, Solar R, wind speed, humidity, and PET
- Provide calibration tool




Performance Comparison with other Models (1950-1989)

Data Source: <u>VIC</u> : 8<sup>th</sup> degree , in house <u>SWAT</u>: From Guobiao Huang <u>BCM:</u> in house

|                                                                         | Lake Shasta                                     | SWAT                | VIC                       | DOM            |
|-------------------------------------------------------------------------|-------------------------------------------------|---------------------|---------------------------|----------------|
|                                                                         |                                                 |                     |                           | BCM            |
| -                                                                       |                                                 | 0.91                | 0.80                      | 0.8            |
|                                                                         | Lake Oroviile                                   | 0.89                | 0.89                      | 0.8            |
|                                                                         | Yuba River (YRS)                                | 0.88                | 0.86                      | 0.8            |
|                                                                         | Lake Folsom                                     | 0.84                | 0.87                      | 0.8            |
|                                                                         |                                                 |                     |                           |                |
| UP_TLG<br>I_MLRTN<br>UP_YRS                                             |                                                 |                     |                           |                |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM                                 |                                                 |                     |                           |                |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM<br>UP_SNS                       | NSE Score (Nash-Sute                            | liffe model         | efficiency                | 0              |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM<br>UP_SNS<br>I_MCLRE            | NSE Score (Nash-Suto                            | liffe model<br>SWAT | -                         | /)<br>BCM      |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM<br>UP_SNS<br>I_MCLRE<br>I_SHSTA | NSE Score (Nash–Suto<br>Stanislaus R at Goodwin |                     | efficiency<br>VIC<br>0.81 |                |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM<br>UP_SNS<br>I_MCLRE            |                                                 | SWAT                | VIC                       | BCM            |
| UP_TLG<br>I_MLRTN<br>UP_YRS<br>UP_FOLSM<br>UP_SNS<br>I_MCLRE<br>I_SHSTA | Stanislaus R at Goodwin                         | <b>SWAT</b><br>0.87 | <b>VIC</b> 0.81           | <b>BCM</b> 0.9 |

# BCM, VIC model Grids and SWAT HRUs



 Total Grid Points or subbasins in the Basin:

- VIC Model: ~3
- BCM Model: 2109
- SWAT Mode : 3 subbasins (25 HRUs)
- SWAT HRUs:
  - Lump regions with similar slope, soil type and land cover into one HRU
  - The same P, Tmax/Tmin, and PET for all HRUs.

# **Data Need and Availability**

• CalSim3 climate input data: 1922-2021

• SWAT the most difficult in acquiring its data, VIC seconds.

|                                   | BCM <sup>*</sup> (grid)  | VIC <sup>**</sup> (grid) | SWAT(gage)  |
|-----------------------------------|--------------------------|--------------------------|-------------|
| Precipitation                     | Yes (monthly)            | Yes (daily)              | Yes (daily) |
| Max/Min Air Temp.                 | Yes (monthly)            | Yes (daily)              | Yes (daily) |
| PET                               | Yes (monthly)            | Yes (daily, derived***)  | Yes (daily) |
| Air Pressure                      | No                       | Yes (daily)              | No          |
| Vapor Pressure                    | No                       | Yes (daily, derived)     | Yes (daily) |
| Wind Speed                        | No                       | Yes (daily)              | Yes (daily) |
| Solar Radiation                   | Yes (long term averaged) | Yes (daily, derived)     | Yes (daily) |
|                                   |                          |                          |             |
| Leaf Area Index                   | No                       | Yes                      | Yes         |
| Albedo                            | No                       | Yes                      | No          |
| Partial Vegetation Cover Fraction | No                       | Yes                      | No          |

\* PRISM monthly data, 1895-current

\*\* 1/8<sup>th</sup> or 1/16<sup>th</sup> daily data developed by UW: 1915-2013

\*\*\* VIC uses the MTCLIM algorithms to convert daily min and max temperature to humidity and incoming shortwave radiation.

# Scalability

## • BCM and VIC

- California BCM model and VIC are gridded (distributed) model, the preparation of parameters and input data on grid points are straightforward for all 301 CalSim3 watersheds
- BCM input data is the easiest to be extended to the most recent year

## • SWAT

 SWAT is a semi-distributed model and very large efforts are needed to prepare parameters and inputs to subbasin and HRUs if expanded into all 301 watersheds

## **Technical Support**

- BCM model: maintained by USGS
- VIC model: maintained by University of Washington
- SWAT model: maintained by Texas A&M University
- Easy to get technical support from USGS for the BCM model

# Summary of Feasibility of BCM

| Criteria                       | BCM                   | VIC                             | SWAT                         |
|--------------------------------|-----------------------|---------------------------------|------------------------------|
| Performance (NSE)*             | 0.89                  | 0.85                            | 0.87                         |
| Resolution                     | 270m                  | ~7km                            | subbasin or<br>HRU dependent |
| Data Need                      | 4 monthly time series | 8 daily time<br>series          | 7 daily time<br>series       |
| Data Availability              | PRISM (up to current) | Developed by<br>UW (up to 2013) | Gage Data                    |
| Scalability                    | good                  | good                            | fair                         |
| Technical Support              | better                | good                            | good                         |
| * Averaged over 8 major waters |                       |                                 |                              |

