

Digitizing and Assessing Unimpaired Flow Time Series in Bulletin 5 during Water Years 1872 to 1921

Yuchuan Lai, Paul Hutton, and Sujoy Roy

2023 CWEMF Annual Meeting Folsom, California April 18, 2023

- Many of the available unimpaired flow series start from water year (WY) 1922
- Data and information for WY 1872-1921 are presented in Bulletin 5
- The period of 1870s to 1920s is of historical significance:
	- A transition from a pre-development landscape to a drained and leveed landscape
	- A transition from an extreme wet period (1870s to 1910s) to an extreme dry period (1920s to 1930s)
- Additional 50 years of runoff records can facilitate the studies of long-term climate change

Reconstructed Eight River Index (970-1970)

Objectives

- Identify the data and information presented in Bulletin 5
- Obtain monthly unimpaired flow series during WY 1872-1921 for 10 watersheds
- Assessing long-term climate change based on the obtained time series

Raw monthly runoff data are limited for WY 1872-1921

- USGS sites; start from around 1906
- Information can be found in Bulletin 5
- Raw daily data available in the USGS database

Periods of USGS station records listed in Bulletin 5

Raw monthly temp and precip data available for WY 1872-1921 based on the information in Bulletin 5

- Using National Weather Service stations (established in 1890)
- Using multiple historic documents and reports e.g., Physical Data and Statistics of California (1886) and Climatology of California (1903)

Locations of precipitation stations Available precipitation records for American River Watershed

A statistical approach was used to predict monthly flow based on temperature and precipitation

Two main components/steps:

- 1. Combine records of multiple stations to obtain temperature and precipitation series using a monthly decomposition method
- 2. Predict monthly flow using a monthly regression model and temperature and precipitation obtained from the first step

A decomposition method used to extract and preserve annual and monthly variability in station records

Temperature of station i: $T_{t,i} = A_t + M_t + S_{t,i} + E_{t,i}$ Precipitation of station i: $P_{t,i} = A_t \times M_t \times S_{t,i} \times E_{t,i}$

At time t,

 S_{t} :

- A_{t} : : Annual variability (same for all stations)
- $M_{\rm t}$: : Monthly variability (same for all stations)
	- Seasonality (for station i)
- E_t : : Monthly residuals (for station i)

To obtain a complete temperature series: $T_t = A_t + M_t + S_t$ To obtain a complete temperature series : $P_t = A_t \times M_t \times S_t$

Obtained time series of temperature and precipitation are consistent with the existing NOAA records

A monthly regression model used to predict monthly flow based on temperature and precipitation

$$
F_{t(\text{when belong to month }m)}^{(l)} = \beta_{0,m} + \beta_{1,m}T_t + \beta_{2,m}P_t^{(l)} + \beta_{3,m}T_t^* + \beta_{4,m}P_t^{*(l)}
$$

 $F_t^{(l)}$: Monthly runoff at time t with a log transformation $\beta_{0,m}, \beta_{1,m}, \beta_{2,m}, \beta_{3,m}, \beta_{4,m}$: Linear regression coefficients for month m T_t : Temperature at time t $P_t^{(l)}$: Precipitation at time t with a log transformation T_t^* : Average temperature from the previous 12 months $P_t^{*(l)}$: Average precipitation from the previous 12 months (transformed)

Available runoff measurements were postprocessed by using the reported unimpaired flow series from WY 1922

The monthly regression model provided accurate results

San Joaquin River

Monthly time series Mean absolute error: 0.033 maf R squared: 0.9

Postprocessed flow Fitted values and prediction

Annual time series Mean aboslute error: 0.236 maf Mean aboslute percentage error: 15%

- Fitted values and prediction Postprocessed flow

No significant changes in annual total flow

Cosumnes River Slope of the best fitting line: 0 (-0.8 to 0.8) TAF per year 1.25 $\frac{1}{2}$ 1.00
 $\frac{1}{2}$ 0.75 $\frac{1}{4}$ 0.50 $0⁰$ 1870 1890 1910 1930 1950 1970 1990 2010 Water year

Mokelumne River Slope of the best fitting line: 0 (-1.2 to 1.1) TAF per year

Sacramento River (Red Bluff) Slope of the best fitting line: -0.2 (-10.9 to 10.6) TAF per year

1870 1890 1910 1930 1950 1970 1990 2010 Water year

Slope of the best fitting line: -0.5 (-7 to 6.1) TAF per year

Merced River Slope of the best fitting line: 0.5 (-1.2 to 2.1) TAF per year

Stanislaus River Slope of the best fitting line: 1 (-1.8 to 3.9) TAF per year

Annual flow (maf)

Slope of the best fitting line: 1.4 (-0.3 to 3.2) TAF per year

Tuolumne River Slope of the best fitting line: 2.4 (-0.4 to 5.2) TAF per year

Yuba River Slope of the best fitting line: -1.4 (-4.9 to 2) TAF per year

Change in WY total flow

Annual flow (maf)

 10.0

Feather River

San Joaquin River

Significant decreases of April to July total flow identified for some watersheds Change in April to July total flow

Mokelumne River Slope of the best fitting line: -0.5 (-1.2 to 0.3) TAF per year

Feather River Slope of the best fitting line: -3.3 (-6.4 to -0.2) TAF per year

Merced River

1890 1910 1930 1950 1970 1990 2010 Water vear

Sacramento River (Red Bluff) Slope of the best fitting line: -2.7 (-6 to 0.7) TAF per year

San Joaquin River Slope of the best fitting line: -0.2 (-2.2 to 1.8) TAF per year

Stanislaus River Slope of the best fitting line: 0 (-1.1 to 1.1) TAF per year

Tuolumne River Slope of the best fitting line: 0.5 (-1.3 to 2.2) TAF per year

Yuba River Slope of the best fitting line: -2.4 (-4 to -0.7) TAF per year

TETRA TECH

Tt

More watersheds exhibit significant decreases in annual percentages of April to July total flow

Summary and conclusions

- Bulletin 5 serves as an important document providing valuable data and information on historical climate and hydrology
- Monthly unimpaired flow series were obtained for WY 1872-1921 using empirical, statistical methods, i.e., a monthly decomposition method and a regression model
- Time series analyses on the obtained unimpaired flow series confirmed the decadal variability and long-term climate change trend
- Results are expected to facilitate various regional applications such as studies related to water supply and water quality