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• Motivation 
• Delta operations and control strategies frequently accessed using flow-salinity 

relationships. 
• Existing artificial neural networks (ANNs) are only data-driven and do not use flow-

salinity relations. 
• Apply Physics-informed neural network (PINN) that incorporates flow-salinity 

relations. 

• Goal 
• Demonstrate major improvements in salinity estimation using PINN over a conventional 

ANN. 
• Neural networks using outflow (input variable) and salinity (target output) data.

Motivation and Goal
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What is PINN[1,2]?
• The laws of physics are described by differential equations. 
• Neural network system for solving differential equations. 

– Inputs as independent variables of the function. 
– Differential equation embedded into the loss function of the neural 

network. 
•    Train the neural network to minimize the loss function.

[1] Raissi, M.; Perdikaris, P.; Karniadakis, G. E. JCP 2019

[2] Psichogios, D. C; Ungar, L. H. AIChE 1992
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 Flow-Salinity Relations: 
Advection-Dispersion Equation

• Flow-salinity relations governed by Advection-Dispersion equation. 

• G-model [3,4]. 

• Delta Simulation Model II (DSM2) [5]. 

•  

•  is cross-sectional area 

•  is longitudinal dispersion coefficient 

•  is volumetric flowrate 

•  is concentration of salt 

•  is longitudinal direction (increasing in upstream) 

•  is time
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[3] Denton, Richard. ASCE 1993 
[4] Denton, R.; Sullivan, G. CCWD 1993
[5] CDWR. 2019
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Problem Domain

Daily DSM2 simulated data (outflow and EC)  
from 1991 to 2015 at  

4 Stations: Martinez, Port Chicago, Chipps Island, Pittsburg

Dataset
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Outflow Pre-processing

• Important to use antecedent outflow information [3,4,6]. 
• 118 days of outflow into a 18-dimensional data vector 

. 

              

⃗Qn = [Qn,1, …, Qn,18]
Qn,i = Qn−i+1, for i ∈ {1,…,8}

Qn,i+8 =
1

11

11

∑
j=1

Qn−11i−j+4, for i ∈ {1,…,10}

From [6]

[3] Denton, Richard. ASCE 1993 
[4] Denton, R.; Sullivan, G. CCWD 1993
[6] Qi S.; Bai Z.; Ding Z.; Jayasundara N.; He M.; Sandhu P.; Seneviratne S.; Kadir T. JWRPM 2021
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Conventional ANN

→
𝑄𝑛 �̂�𝑛

• Feed-forward, fully-connected (MLP) 

• Input: outflow data vector  

• Output: estimated EC  
• Train by minimizing mean square 

error 

⃗Qn
̂Sn

∑
n

( ̂Sn − Sn)2
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PINN

→
𝑄𝑛

𝑡𝑛
𝑥𝑛

�̂�𝑛

• Feed-forward, fully-connected (MLP) 

• Input: outflow data vector  and 
location  and time  
–  ranging between Martinez and 

Pittsburg 
–  ranging between 1991 and 2015 

• Output: estimated EC  
• Train by minimizing mean squared error 

and PDE (Advection-Dispersion) loss 

⃗Qn
xn tn
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∂x (xn,tn,Qn)

− KA
∂2 ̂S
∂x2

(xn,tn,Qn)
)

2
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Methodologies

• K-fold cross-validation (5-fold). 
• Train: 80% Martinez, Chipps Island, Pittsburg. 
• Test: 20% Martinez, Chipps Island, Pittsburg. 
• Also test at Port Chicago, an untrained 

location. 
• For each fold: random hyper-parameters 

search, separately for ANN and PINN. 
• Evaluation metrics: Bias, Nash-Sutcliffe 

Efficiency (NSE), . 
• Inspect salinity time-series.

r2
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Results: Scatter Plots

Greater Performance indicator 
• Smaller Bias 
• Larger NSE 
• Larger r2 10/15



 
 

Results: Time-series Plots
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Results: Time-series Plots
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Summary and Future Work

• Summary 
• PINN model outperforms ANN model at all four locations. 
• Improvement is most significant at Pittsburg, an inner-most location. 

• Future Work 
• Further evaluations on more data: other locations, observed data. 
• Varieties of PINN: Fourier Network, LSTM, DGM, etc.

13/15



 
 

[1] Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A deep 
learning framework for solving forward and inverse problems involving nonlinear partial differential 
equations. Journal of Computational physics, 378:686–707. 
[2] Psichogios, D. C. and Ungar, L. H. (1992). A hybrid neural network-first principles approach to 
process modeling. AIChE Journal, 38(10):1499–1511. 
[3] Richard A Denton. Accounting for antecedent conditions in seawater intrusion modeling—
Applications for the San Francisco Bay-Delta. In Hydraulic engineering, pages 448–453. ASCE, 1993. 
[4] Denton, R. and Sullivan, G. (1993). Antecedent flow-salinity relations: Application to delta planning 
models. Contra Costa Water District. Concord, California. 
[5] CDWR (California Department of Water Resources). 2019. DSM2: Delta simulation model II. 
Sacramento, CA: Bay Delta Office, CDWR. 
[6] Siyu Qi, Zhaojun Bai, Zhi Ding, Nimal Jayasundara, Minxue He, Prabhjot Sandhu, Sanjaya 
Seneviratne, and Tariq Kadir. Enhanced artificial neural networks for salinity estimation and forecasting 
in the sacramento-san joaquin delta of california. Journal of Water Resources Planning and 
Management, 147(10):04021069, 2021.

References

14/15



 
 

 

15/15


