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Risk of groundwater contamination

Nitrate in shallow groundwater
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Fate of nitrate during Ag-MAR

infiltration: ~0.1m/d, 177 cm recharge

120 1 Mineralization
80 |- Leaching of of new nitrate
a0l nitrate

0 Ty S ® eo ol

4-week flooded

2-week flooded

2/24/2020 3/5/2020 3/15/2020 3/25/2020 4/4/2020

Ti e .
® 0.2m ® 1m me infiltration : ~0.2m/d
Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T & O e Ponding 204 cm recharge

water




Nitrate leaching

Observed NO;-N amount leached Cumulative NO;-N amount leached

9 12 -
8 _ &
5 10 -
ol >
£ @
2 64 5 8
= g
g iﬁ 6 - @ 4-weeks flooded
— z
'C'S” 2 4- @- 2-weeks flooded
> ©
E 2-
3 . _..—.
o
llllll lll'll lllll llll 0 ll]lll]l'lllIll!llllll‘llll
0O 4 8 12 16 20 24 28 0O 4 8 12 16 20 24 28
Time from start of flooding (d) Time from start of flooding (d)

Levintal et al. 2023, STOTEN



' model

- Reactive nitrate leaching




Reactive nitrate leaching transport modeling

e Conditional kinetic HP1-MIM (HYDRUS-1D & PHREEQC Model)

* Dual-porosity, mobile-immobile zone reactive nitrate transport model
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Simulated Nitrogen Transformation processes

(1) Leaching

(2) Mobile Nitrification (1% order

(3) Mobile Mineralization (1% order

(4) Immobile Nitrification

(5) Immobile Mineralization

(6) Denitrification

(7) Mass transfer (mobile- immobile phase

Murphy et al. 2023, submitted



Reactive nitrate leaching transport modeling

HYDRUS-1D calculates

Water Flow o6(h) ,
(Richard’s Eq.) ot OY[KU})( * COSQ” - S
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Reactions)

PHREEQC calculates
Denitrification (zero-order kinetic reaction; rates estimated from lab incubation data,

conditional on %PSF)
Nitrification (first-order kinetic reaction; rates assumed to be non-limiting, conditional on

%PSF)
Mineralization (first-order kinetic reaction; rates estimated from lab incubation data,

conditional on water content and temperature)
Adsorption of org-N, org-C, ammonium (Freundlich Isotherm, parameters from literature)

Murphy et al. 2023, submitted



Soil textures modeled

Fine sandy loam

SAGBI Suitability Group
|| Excellent

I Good
7 Moderately Good
C} Moderately Poor
D Poor

- Very Poor

Nonpareil, Monterey

Stand age: 20 years

Flood irrigated

Dinuba soil, near Modesto, CA

Butte, Padre, Nemaguard
Stand age: 14 years

Dune land, near Delhi, CA
Sprinkler irrigated

SAGBI: excellent




Model set up and calibration

* Mineralization and denitrification rates were informed by lab incubation results
e Van Genuchten parameters:

0.076

- 0.028 0.345 0.025 1.78 565.4 0.5
- 0.036 0.320 0.025 2.00 87.84 0.5
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Flooding Magnitude (cm H,0)

Role of flooding magnitude and frequency on nitrate leaching
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| Absolute values are influenced by initial soil nitrate concentrations... Murphy et al. In Prep.
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* Mineralization dynamics resulting from Ag-MAR events have
multiple implications:
* Threat for increased mobile nitrate in the vadose zone
* Potential for adaptive nutrient management strategies

~ * Decreasing time between flooding applications decreases the ==
- amount of mineralization occurring in the upper root zone B
—=— — * May increase potential for conditions favoring denitrification b= 3;
* Recharge concentrations from both field sites fall under the MCL for =—

nitrate contamination (<10 mg/L NO,-N) (==

-

» Delhi: 2.81 — 7.22 mg/L ; Modesto: 3.18 — 3.26 mg/L T‘%‘
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Reactive nitrate leaching transport modeling

e 80 cm domain, 1 cm discretization 0

* Hourly time step, 34-day period 0

e |nitial VWC was set to 0.08 zz

* Upper boundary = atmospheric boundary with E 40 g i::::i::l’::*
time-dependent P and E rates < 50 o HP1-MIM

« Water was applied as high magnitude & o0 Model Uncertainty
precipitation events 70

* Lower boundary was set as a variable pressure %
head (pressure head =-51 cm) 20

N 0 2 4 6 a8 10

NO3 -N (ppm)

Murphy et al. 2023, submitted
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