

Nitrate leaching under Ag-MAR

Helen E. Dahlke, Elad Levintal, Nick Murphy, Cristina Prieto Garcia University of California, Davis - hdahlke@ucdavis.edu

DWR Flood-MAR program

MANAGED RECHARGE

Risk of groundwater contamination

https://suscon.org/wp-content/uploads/2021/06/Protecting-Groundwater-Quality-While-Replenishing-Aquifers.pdf

Source: CV-Salts Coalition

Nitrate leaching in the vadose zone

control

vs. flooded

Kearney Research and Extension Center Thompson seedless grapes (*Vitis vinifera* flooded 2 and 4 weeks in Feb 2020, 2021

Fate of nitrate during Ag-MAR

infiltration: ~0.1m/d, 177 cm recharge

Murphy et al. 2021, VZJ; Levintal et al. 2022, Crit. Rev ES&T

Nitrate leaching

Reactive nitrate leaching model

Reactive nitrate leaching transport modeling

- Conditional kinetic HP1-MIM (HYDRUS-1D & PHREEQC Model)
- Dual-porosity, mobile-immobile zone reactive nitrate transport model

Simulated Nitrogen Transformation processes

- (1) Leaching
- (2) Mobile Nitrification (1st order
- (3) Mobile Mineralization (1st order
- (4) Immobile Nitrification
- (5) Immobile Mineralization
- (6) Denitrification
- (7) Mass transfer (mobile- immobile phase

Reactive nitrate leaching transport modeling

HYDRUS-1D calculates

Water Flow (Richard's Eq.)

Solute Transport (ADE + Sinks + Biogeochemical Reactions)

 $\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial x} \left[K(h) \left(\frac{\partial h}{\partial x} + \cos \alpha \right) \right] - S(h)$

- Denitrification (zero-order kinetic reaction; rates estimated from lab incubation data, conditional on %PSF)
- Nitrification (first-order kinetic reaction; rates assumed to be non-limiting, conditional on %PSF)
- Mineralization (first-order kinetic reaction; rates estimated from lab incubation data, conditional on water content and temperature)
- Adsorption of org-N, org-C, ammonium (Freundlich Isotherm, parameters from literature)

Soil textures modeled

Fine sandy loam

Nonpareil, Monterey Stand age: 20 years Flood irrigated Dinuba soil, near Modesto, CA SAGBI: moderately good

Sand

Butte, Padre, Nemaguard Stand age: 14 years Dune land, near Delhi, CA Sprinkler irrigated SAGBI: excellent

Model set up and calibration

- Mineralization and denitrification rates were informed by lab incubation results
- Van Genuchten parameters:

Layer	θ _r (-)	θ _s (-)	α (cm⁻¹)	n (-)	K _s (cm day⁻¹)	 (-)
Fine sandy loam						
1 (0 - 80cm)	0.032	0.320	0.076	1.86	76.8	0.5
Sand						
1 (0 – 60cm)	0.028	0.345	0.025	1.78	565.4	0.5
2 (60 - 80cm)	0.036	0.320	0.025	2.00	87.84	0.5

Role of flooding magnitude and frequency on nitrate leaching

! Absolute values are influenced by initial soil nitrate concentrations...

Murphy et al. In Prep.

Conclusions

- Mineralization dynamics resulting from Ag-MAR events have multiple implications:
 - Threat for increased mobile nitrate in the vadose zone
 - Potential for adaptive nutrient management strategies
- Decreasing time between flooding applications decreases the amount of mineralization occurring in the upper root zone
 - May increase potential for conditions favoring denitrification
- Recharge concentrations from both field sites fall under the MCL for nitrate contamination (<10 mg/L NO₃-N)
 - Delhi: 2.81 7.22 mg/L; Modesto: 3.18 3.26 mg/L

Many THANKS to my students, postdocs and collaborators!

Nick Blom, Cristina Prieto Garcia, Elad Levintal, Astrid Volder, David Doll, Roger Duncan

Thank you!

NIFA

ECONOMIC RESEARCH SERVICE United States Department of Agriculture

Reactive nitrate leaching transport modeling

- 80 cm domain, 1 cm discretization
- Hourly time step, 34-day period
- Initial VWC was set to 0.08
- Upper boundary = atmospheric boundary with time-dependent P and E rates
- Water was applied as high magnitude precipitation events
- Lower boundary was set as a variable pressure head (pressure head = -51 cm)

Simulated and observed soil nitrate

Murphy et al. 2023, submitted

References

- UCDAVIS DEPARTMENT OF LAND, AIR AND WATER RESOURCES
- Levintal, E., Kniffin, M.L., Ganot, Y., Marwaha, N., Murphy, N.P., and H.E. Dahlke. 2022. Agricultural managed aquifer recharge (Ag-MAR – a method for sustainable groundwater management: A review. Critical Reviews in Environmental Science and Technology. <u>https://doi.org/10.1080/10643389.2022.2050160</u>
- Kourakos, G., Dahlke, H.E., Harter, T. 2019. Increasing Groundwater Availability and Baseflow through Agricultural Managed Aquifer Recharge in an Irrigated Basin. Water Resources Research, <u>https://doi.org/10.1029/2018WR024019</u>
- Murphy, N.P., H. Waterhouse, and H.E. Dahlke. 2021. Influence of Agricultural Managed Aquifer Recharge on nitrate transport – the role of soil type and flooding frequency. Vadose Zone Journal, <u>https://doi.org/10.1002/vzj2.20150</u>.
- Dahlke, H.E., Brown, A.G., Orloff, S., Putnam, D., A. O'Geen. 2018. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage. California Agriculture, <u>https://doi.org/10.3733/ca.2018a0001</u>
- Kocis, T.N. and H.E. Dahlke. 2017. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California. Environmental Research Letters, <u>https://doi.org/10.1088/1748-9326/aa7b1b</u>.
- O'Geen et al. 2015. A Soil Survey Decision Support Tool for Groundwater Banking in Agricultural Landscapes, California Agriculture Journal, <u>https://doi.org/10.3733/ca.v069n02p75</u>