Multi-scale modeling of water and nitrate leaching to groundwater from irrigated agriculture using **SWAT and Hydrus**

2023 CWEMF Annual Meeting

Isaya Kisekka Associate Professor Dept. Land, Air, and Water Resources Dept. Biological and Agricultural Engineering Director: Agricultural Water Center

gricultural Water Center ISDA NIFA - Center of Excellence

Outline

- Nitrate leaching to groundwater from irrigated lands
- Monitoring of nitrate leaching into groundwater
- SWAT and Hydrus comparison in simulating nitrate leaching under irrigated processing tomatoes

Motivation

• Agriculture is one of the major sources of groundwater nitrate (Harter et al., 2017).

Motivation

- Recent policy changes streamline regulation of nitrate discharge to groundwater (SNCP/SNMP).
- Increasing need to improve the irrigation and fertilizer efficiency of various cropping systems in California's Central Valley.
- Need for innovative field scale monitoring techniques to assess the effectiveness of irrigation and nitrogen (N) best management practices on mitigating nitrate leaching to groundwater.
- Need for agrohydrologic models to assess BMPs over the landscape

Goal: Model comparison

• Assess nitrate leaching to groundwater through monitoring and modeling.

Approach:

Evaluate 3 monitoring approaches:

- 1. Field Scale Mass Balance
- 2. Vadose Zone Monitoring
- 3. Groundwater Monitoring
- 4. Agrohydrologic Modeling

Field Scale Mass Balance Plant uptake Denitrification Evapotranspiration ΔSW Irrigation Irrigation Fertilizer Precipitation Minerlization

Water balance: I+P-ET±dS=Drainage

Nitrogen Balance $N_{Irr}+N_{Min}+F-N_{Upt}-N_{Denit} \pm dSN = N$ Leaching

Vadose Zone Monitoring (VMS)

Cal Vadose Zone Monitoring Network (Cal-VMN)

 Current: Three monitoring sites across Central Valley.

ENTERPRISE

Legend

Nitrate concentrations as a function of time and depth were measured in the VMS ports

Increase in nitrate conc. in the deep vadose zone following atmospheric rivers events

Groundwater monitoring wells

general groundwater flow direction

Groundwater Observation Well

Processing Tomato site: Esparto, CA

Almond site: Modesto, CA

Positive Water balance

- Irrigation equivalent to ETc
- Soil water storage

Positive Nitrogen balance

Potential leaching N concentrations at the end of the Triticale season

ricultural Water Center

NIFA - Center of Excellence

- Water balance was positive, suggesting potential drainage
- Fertilizer application was less than half the plant demands
- However, other sources of mineral N, such as irrigation, mineralization and residual N in soil suggest potential nitrogen leaching below the triticale root zone towards the groundwater.

2021 processing tomato field mass balance approach

 N_{Irr} + N_{Min} + F - N_{Upt} - N_{denit} ± dSN=N Leaching

- N_{irr} measured concentrations * Irrigation
- N_{min} estimated from Geisseler literature
- Fertilizer reported by grower
- N_{uptake} measured as fruit yield * N content in yield. Does not include green biomass in this case.
- N_{denit} Estimated as 5% of fertilizer

I+P-ET±dS=Drainage

- Irrigation measured with pressure transducers in each irrigation area
- Precipitation is zero during the growing season
- ET measured with EC tower. Filled in missing days with remote sensing
- dS measured in the top 2ft at the beginning and end of the season at 6 locations.

Nitrate leaching estimation: Mass balance vs Vadose zone monitoring

Vadose zone monitoring

Soil pore water approach: $NO_3 * (Irr-ETc)$

<u>Mass balance approach</u> Higher variability – more variables

Modeling water and nitrogen dynamics

Comparing SWAT versus HYDRUS (2D/3D) for simulating water and nitrogen dynamics

Model comparison

SWAT

- Hydrology: Tipping bucket
- Nitrate cycling: Yes
- Carbon cycling: Yes
- Crop growth: Yes
- Computation: HRU
- Scale: Watershed

Hydrus (2D/3D)

- Hydrology:Richards Equation
- Nitrate cycling: Yes (simplified)
- Carbon cycling: No
- Crop growth: No
- Computation: Finite Element
- Scaled: Field/Plot

Soil B

Soil C

Soil D

Concluding remarks

- Nitrate leaching from agricultural lands is measurable using mass balance, vadose zone, or groundwater monitoring approaches but uncertainty varies between approaches
- Models are needed for upscaling nitrate leaching assessments
- At the annual time scale both SWAT and HYDRUS (2D/3D) give comparable results

Thank you!

Isaya Kisekka Director: Agricultural Water Center Associate Professor Hydrology & Irrigation University of California Davis Phone: 530-379-9549 E-mail: ikisekka@ucdavis.edu Web: http://kisekka.ucdavis.edu/

