# Exploring primary production and nutrient cycling in the Delta using a coupled hydrodynamicbiogeochemical model

CALIFORNIA WATER AND ENVIRONMENTAL MODELING FORUM

Sienna White\*, Pradeep Mugunthan, Allie King, Farid Karimpour, Dave Senn\*\*

\*<u>siennaw@berkeley.edu,</u> \*\*<u>davids@sfei.org</u>

SFEE AQUATIC SCIENCE CENTER SAN FRANCISCO ESTUARY INSTITUTE & THE AQUATIC SCIENCE CENTER

### • Community modeling effort

- Three domains (San Francisco Bay, Delta, S. San Francisco Bay)
- Variety of open-source reports available online



- The Delta is a highly-altered and complex system
- Phytoplankton production in this region is low, and commonly thought to be controlled through light limitation + heavy benthic grazing



- Using a numerical model can help us explore and isolate some of these forcings
- Also! ... a flexible and well-validated framework can be applied for forecasting and scenario studies

... Today let's explore how our model can be used to investigate dissolved inorganic nitrogen delivery throughout the Delta

### Our model set-up (DFLOW-FM + DELWAQ)





*Model domain:* Delta, San Francisco Bay, coastal ocean

*Model grid:* ~75,000 horizontal cells, 10 vertical layers

*Water years simulated:* WY2011, WY2016

#### Key processes represented in our biogeochemical model



## **Biogeochemical Model Validation:**

#### Discrete monthly data (EMP + USGS)



DWR Environmental Monitoring Program (EMP, Interagency Ecological Program; M. Martinez et al. 2020) & USGS San Francisco Bay Water Quality Program (Schraga and Cloern 2017; Schraga et al. 2020)

#### **DIN:** WY2011 + WY2016, subset of stations

#### \* DIN = NO3 + NH4



# How can we translate model results to management-relevant questions?

# **Define "control volumes"**

### **Define "control volumes"**

Allows us to examine mass fluxes of nutrients & phytoplankton - Can isolate regions of interest under scenario studies











→ We can examine how operational changes affect nutrient delivery to regions of the Delta  $\rightarrow$  Quantify how the Delta Cross Channel affects circulation throughout the interior Delta





.... Or how system upgrades like Regional San affect net export from the Delta





## Two "bigger questions" to think about ..

1 - How can we validate a numerical model for management-related questions?

# 2 - How can we translate model results to be relevant for management questions?

# 1 - How can we validate a numerical model for management-related questions?

- $\rightarrow$  Validate across a range of time scales with different data  $\rightarrow$  Important to be critical of models and investigate that you're not getting the "right" output for "wrong" reasons.
- 2 How can we translate model results to be relevant for management questions?
  → Relating model results to mass fluxes + system-level transport
  → Other thoughts?



# **Thank you!**

### 1 - How can we validate a numerical model for

#### management-related questions?

- $\rightarrow$  Validate across a range of time scales with different data
- $\rightarrow$  Important to be critical of models and investigate that you're not getting the "right" output for "wrong" reasons.

AQUATIC

SAN FRANCISCO ESTUARY INSTITUTE & THE AOUATIC SCIENCE CENTER

- 2 How can we translate model results to be relevant for management questions?
  - $\rightarrow$  Relating model results to mass fluxes + system-level transport
  - $\rightarrow$  Other thoughts?

