Steamboat Sloughs Guidance Structures Evaluation Using ECO-PTM

Xiaochun Wang Modeling Support Office Department of Water Resources

Evaluate Benefits of Salmonid Guidance Structures at Sutter and Steamboat Sloughs.

Alternatives

Alternative 1

FFGS collector and deflector with a BAFF spanning between

- Full operability assuming the two FFGS can pivot away from the main channel and up against the bank (off mode).
- Highest expected routing efficiency

FFGS deflector with a BAFF collector

 Full operability assuming FFGS can pivot away from the main channel and up against the bank and BAFF can be turned off.

A de la della d della d

BAFF collector

Alternative 3

• Full operability as BAFF can be turned off.

 FFGS (Floating Fish Guidance Structure)
BAFF (Bio-Acoustic Fish Fence)
Rock Groin

Alternatives

Alternative 4

FFGS deflector

 Full operability assuming FFGS can pivot away from the main channel and up against the bank (off mode).

Rock groin collector

• Limited to no operability due to the costs and disruption of deployment and removal.

Rock groin deflector upstream

 FFGS (Floating Fish Guidance Structure)
BAFF (Bio-Acoustic Fish Fence)
Rock Groin

Fish Routing (Guidance) and Survival – Analytical Tool Process Sequence

Bay-Delta SCHISM 3D Hydrodynamics and Transport Simulate changes in hydrodynamic conditions for each alternative

Eulerian-Lagrangian-agent Method / Evaluating Likely Animal Movement (ELAM)

Engineer Research and Development Center (ERDC)

Predict fish response to guidance structures (physical and behavioral); net change in routing for alternatives

CONTRACTOR OF CONTRACTOR

Ecological Particle Tracking Model (ECO-PTM) Ecological Particle Tracking Model (ECO-PTM), an individual-based juvenile salmonid migration and survival model Predict net change in juvenile salmonid survival though different pathways associated with changes in routing

ECO-PTM Overview

ECO-PTM Overview

Type of particles:

ECO-PTM: Salmon Particles

Swimming behavior parameters: Swimming velocity ✓ Group mean/SD ✓ Individual mean/SD ✓ Individual instantaneous > Holding ✓ Flood (STST) ✓ Diel Confusion

✓ Flow field Signal/noise

ECO-PTM: Salmon Particles

Individual particle routing probability:

- Individual particle routing probability
 - ✓ GLM at 4 junctions:
 - Sutter, Steamboat, DCC, GEO
 - ✓ Flow Split

Individual particle survival probability:

Survival

- 🖌 XT model
- Individual survival probability

ECO-PTM - Sample of ECO-PTM Simulation Output

	А	В	С	D	E	F	G	н	1	J	К	L	М	Ν
1	Insertion Date	Scenario	SUT_RATIO	STM_RATIO	SACR_SS_RATIO	SACR_GEO_RATIO	GEO_RATIO	DCC_RATIC	SUT_SUV	STM_SUV	SAC_SUV	GEO_SUV	DCC_SUV	Combined_SUV
2	1/1/2011	stm_3_sP	0.26	0.31	0.43	0.83	0.17		0.61	0.71	0.68	0.42		0.65
3	1/2/2011	stm_3_sP	0.27	0.30	0.43	0.83	0.17		0.61	0.70	0.67	0.35		0.64
4	1/3/2011	stm_3_sP	0.26	0.30	0.44	0.84	0.16		0.59	0.68	0.65	0.31		0.62
5	1/4/2011	stm_3_sP	0.26	0.29	0.45	0.83	0.17		0.59	0.69	0.66	0.33		0.62
6	1/5/2011	stm_3_sP	0.25	0.28	0.47	0.83	0.17		0.57	0.66	0.64	0.32		0.60
7	1/6/2011	stm_3_sP	0.22	0.28	0.50	0.83	0.17		0.52	0.64	0.60	0.30		0.57
8	1/7/2011	stm_3_sP	0.21	0.26	0.52	0.82	0.18		0.52	0.61	0.59	0.32		0.55
9	1/8/2011	stm_3_sP	0.20	0.25	0.55	0.83	0.17		0.47	0.58	0.56	0.29		0.52
10	1/9/2011	stm_3_sP	0.19	0.25	0.56	0.83	0.17		0.47	0.58	0.56	0.25		0.52
11	1/10/2011	stm_3_sP	0.18	0.24	0.58	0.82	0.18		0.44	0.57	0.55	0.28		0.51
12	1/11/2011	stm_3_sP	0.17	0.23	0.60	0.83	0.17		0.44	0.57	0.55	0.24		0.50
13	1/12/2011	stm_3_sP	0.18	0.23	0.60	0.83	0.17		0.45	0.56	0.55	0.31		0.51
14	1/13/2011	stm_3_sP	0.17	0.22	0.61	0.83	0.17		0.51	0.63	0.60	0.28		0.55
15	1/14/2011	stm_3_sP	0.17	0.22	0.61	0.83	0.17		0.50	0.61	0.58	0.24		0.54
16	1/15/2011	stm_3_sP	0.17	0.21	0.62	0.82	0.18		0.51	0.62	0.58	0.29		0.55
17	1/16/2011	stm_3_sP	0.17	0.21	0.62	0.81	0.19		0.55	0.61	0.57	0.23		0.54
18	1/17/2011	stm_3_sP	0.17	0.21	0.62	0.80	0.20		0.52	0.61	0.55	0.22		0.52
19	1/18/2011	stm_3_sP	0.16	0.20	0.64	0.80	0.20		0.49	0.59	0.52	0.28		0.50
20	1/19/2011	stm 3 sP	0.15	0.20	0.65	0.78	0.22		0.50	0.57	0.50	0.26		0.48

ECO-PTM – Scenarios for SS Fish Guidance Structures

- ELAM model predictions (% change in routing) applied to ECO-PTM scenarios to determine subsequent change in survival with different migration pathway
- Results show negligible difference in entrainment for Alts 2, 3, 4, and 6

Scenario / Alt	SS Routing Increase from ELAM	SS Routing Increase Used in ECO-PTM*
Baseline	NA	NA
1	4.6 %	5%
2	0.3 %	0% Baseline
3	-0.1 %	0% Baseline
4	0.2 %	0% Baseline
5a	3.4 %	3%
5c	3.3 %	3%
6a	0.3 %	0% Baseline
6c	0.2 %	0% Baseline

ECO-PTM – Scenarios for SS Fish Guidance Structures

- ELAM model predictions (% change in routing) applied to ECO-PTM scenarios to determine subsequent change in survival with different migration pathway
- Results show negligible difference in entrainment for Alts 2, 3, 4, and 6

Scenario / Alt	SS Routing Increase from ELAM	SS Routing Increase Used in ECO-PTM*
Baseline		
1	4.6 %	5%
2		
3		
4		
5a	3.4 %	3%
5c		
6a		
6c		

ECO-PTM - DSM2 HYDRO Historical Simulation 1990-2017, Flow @ Freeport

6

ECO-PTM – Simulation Period and Flow Condition

- Particle Insertion Period: 1/1/2011 12/31/2014
- Migration Months: November -- May

Freeport Flow (CFS)

ECO-PTM Simulations

Release day 1 (1/1/2011); Release 100 particles every 15 minutes for 24 hours, total 9600

ECO-PTM - Sample of ECO-PTM Simulation Output

	А	В	С	D	E	F	G	н	1	J	К	L	М	Ν
1	Insertion Date	Scenario	SUT_RATIO	STM_RATIO	SACR_SS_RATIO	SACR_GEO_RATIO	GEO_RATIO	DCC_RATIC	SUT_SUV	STM_SUV	SAC_SUV	GEO_SUV	DCC_SUV	Combined_SUV
2	1/1/2011	stm_3_sP	0.26	0.31	0.43	0.83	0.17		0.61	0.71	0.68	0.42		0.65
3	1/2/2011	stm_3_sP	0.27	0.30	0.43	0.83	0.17		0.61	0.70	0.67	0.35		0.64
4	1/3/2011	stm_3_sP	0.26	0.30	0.44	0.84	0.16		0.59	0.68	0.65	0.31		0.62
5	1/4/2011	stm_3_sP	0.26	0.29	0.45	0.83	0.17		0.59	0.69	0.66	0.33		0.62
6	1/5/2011	stm_3_sP	0.25	0.28	0.47	0.83	0.17		0.57	0.66	0.64	0.32		0.60
7	1/6/2011	stm_3_sP	0.22	0.28	0.50	0.83	0.17		0.52	0.64	0.60	0.30		0.57
8	1/7/2011	stm_3_sP	0.21	0.26	0.52	0.82	0.18		0.52	0.61	0.59	0.32		0.55
9	1/8/2011	stm_3_sP	0.20	0.25	0.55	0.83	0.17		0.47	0.58	0.56	0.29		0.52
10	1/9/2011	stm_3_sP	0.19	0.25	0.56	0.83	0.17		0.47	0.58	0.56	0.25		0.52
11	1/10/2011	stm_3_sP	0.18	0.24	0.58	0.82	0.18		0.44	0.57	0.55	0.28		0.51
12	1/11/2011	stm_3_sP	0.17	0.23	0.60	0.83	0.17		0.44	0.57	0.55	0.24		0.50
13	1/12/2011	stm_3_sP	0.18	0.23	0.60	0.83	0.17		0.45	0.56	0.55	0.31		0.51
14	1/13/2011	stm_3_sP	0.17	0.22	0.61	0.83	0.17		0.51	0.63	0.60	0.28		0.55
15	1/14/2011	stm_3_sP	0.17	0.22	0.61	0.83	0.17		0.50	0.61	0.58	0.24		0.54
16	1/15/2011	stm_3_sP	0.17	0.21	0.62	0.82	0.18		0.51	0.62	0.58	0.29		0.55
17	1/16/2011	stm_3_sP	0.17	0.21	0.62	0.81	0.19		0.55	0.61	0.57	0.23		0.54
18	1/17/2011	stm_3_sP	0.17	0.21	0.62	0.80	0.20		0.52	0.61	0.55	0.22		0.52
19	1/18/2011	stm_3_sP	0.16	0.20	0.64	0.80	0.20		0.49	0.59	0.52	0.28		0.50
20	1/19/2011	stm 3 sP	0.15	0.20	0.65	0.78	0.22		0.50	0.57	0.50	0.26		0.48

ECO-PTM – Baseline Survival Rates for Various Routes

	SUT_RATIO	STM_RATIO	SACR_SS_RATIO	SUT_SUV	STM_SUV	SAC_SUV	iEO_SUV	Combined_SUV
Median	0.11	0.10	0.79	0.39	0.49	0.44	0.21	0.39
Mean	0.13	0.13	0.74	0.40	0.51	0.45	0.22	0.41

ECO-PTM – Baseline Combined Survival Rates for Different Months

	Jan	Feb	Mar	Ар	r	May	Nov	Dec	All
Median	0.	41	0.39	0.44	0.44	0.31	0.33	0.45	0.39
Mean	0.	42	0.39	0.46	0.44	0.35	0.34	0.47	0.41

ECO-PTM – Survival Rate Difference for Various Scenarios

Scenario 1: 5% Entrainment Increase

Scenario 5: 3% Entrainment Increase

ECO-PTM – Survival Rate Difference for Different Months

Scenario 1: 5% Entrainment Increase

Scenario 5: 3% Entrainment Increase

ECO-PTM – Simulation Results for All Scenarios

Scenario / Alt	SS Routing Increase from ELAM	SS Routing Increase Used in ECO-PTM*	Survival Difference (Scenario – Baseline)
Baseline			
1	4.6 %	5%	0.00231 (Median), 0.00279 (Mean)
2			
3			
4			
5a	3.4 %	3%	0.00199 (Median), 0.00186 (Mean)
5c			
6a			
6c			

ECO-PTM Sensitivity Study

- Purpose: What level of routing probability increase would be required to change survival
- Simulation: 1/1/1991 6/1/2016, total 6,984 simulations
- Scenario: Increased 30% of Steamboat Slough routing probability

ECO-PTM – Sensitivity Study: 1991 – 2016 Baseline Survival Rate

ECO-PTM – Sensitivity Study: Survival Rate Difference

30% increase in routing probability - baseline

0.02

Mean

0.02

0.02

0.02

0.01

0.02

0.02

0.02

0.02

0.02

1.0

Discussion

- Ecological modeling tools can offer valuable insights to effective decision making
- For all scenarios/alternatives, modeling results indicate changes in mean routing rates were low
- When using mean routing changes from ELAM, survival benefits simulated are negligible for all alternatives
- To change survival, a significant increase in Steamboat Slough routing probability (e.g., 30%) is needed

Acknowledgement

ITP COA 8.9 Working Group

DWR:

Mohammed(Shahid) Anwar, Ryan Reeves, Kevin Clark, Jon Shu, Eli Ateljevich

USACE:

Andy Goodwin

ESA:

Chris Fitzer, Bill Eisenstein

And other working group members and staff

USGS: Russ Perry, Adam Pope

ECO-PTM Zones for Survival Calculation

