Development and Verification of a Solute Transport Module for IWFM

Uditha C. Bandara, Tyler Hatch, Emin C. Dogrul

Sustainable Groundwater Management Office

Overview

- \triangleright Why solute transport modeling
- \triangleright Governing equations
- ➢ Challenges of solving governing equations
- ➢ Approach
- \triangleright Comparison of numerical solutions with analytical solutions ➢ MT3D, SUTRA and other published solutions
- ➢ Application to a real world problem
	- ➢ Rocky Mountain Arsenal site, Colorado
- ➢ Next steps

Why solute transport modeling?

- ➢ **Water quality degradation** and **seawater intrusion** are two sustainable groundwater management indicators (Sustainable Groundwater Management Act-SGMA, 2014)
- ➢ Groundwater Sustainable Agencies (GSA) are required to identify and manage potential water quality and seawater intrusion issues
	- \triangleright Groundwater contamination due to use of agricultural fertilizers is a common issue within the Central Valley, California
	- ➢ Coastal groundwater basins are vulnerable for seawater intrusion due to sea-level rise and climate change
- ➢ **Identifying and managing potential water quality and seawater intrusion** issues requires numerical tools that can simulate solute transport through groundwater
- \triangleright Currently IWFM does not have the in-built capability to simulate solute transport and hence water quality or seawater intrusion

Bertoldi et al. 1991

Advection-Dispersion Equation for Porous Media

- C^k = dissolved concentration of solute k [$M/L³$],
- $t =$ time $[T]$,
- D_{ij} dispersion coefficient tensor $[L^2/T]$ -both hydrodynamics and molecular diffusions,
- v_i = linear pore water velocity $[L/T]$ from a groundwater flow model,
- q_s = volumetric flow rate per unit volume representing sources or sinks $[1/T]$,
- C_S^k =source or sink concentration of solute k $[M/L^3]$

Approach

Water Quality Simulations

Flow **Solution Transport Solution Velocity**

One way coupled (loosely coupled)

Concentrations are small -> Does not impact $(<5000$ mg/l) the flow density

Seawater Intrusion Simulations

Density dependent flow simulations

Challenges of solving Advection-Dispersion Equation

- ➢ Governing Advection-dispersin equation
	- ➢ *hyperbolic* when advection is dominant
	- ➢ *parabolic* when dispersion is dominant
- \triangleright No single numerical solution works for all conditions
- ➢ Many field conditions are advection dominated (*Grid Peclet number, Pe>1*)
	- \triangleright Numerical dispersion issue
	- \triangleright Spurious oscillation near sharp fronts (under and over shoot)
- ➢ Stabilization methods are needed for advection dominated conditions in Eulerian methods such as Finite Elements
	- ➢ Lagrangian methods-no numerical dispersion or spurious oscillations-more computational time

 $|v|$

L

$$
P_e = \frac{|v|L}{D}
$$

is the magnitude of the seepage velocity vector, LT^{-1} ;

is a characteristic length, commonly taken as the grid cell width, L;

is the dispersion coefficient, L^2T^{-1} . D

Stabilization methods of Finite Elements for advection dominated cases

➢ 1-D: Petrov Galerkin (PG)

- \triangleright Artificial diffusion is added to overcome the instability near sharp fronts through unwinding
- ➢ 2-D: Streamline Upwind Petrov Galerkin-SUPG (Brooks and Huges, 1982)
	- \triangleright For 2D case excessive cross diffusion (perpendicular to the flow) in Petrov Galerkin method corrupts the results
	- ➢ Upwind effect is added only in the direction of flow-SUPG

Instantaneous Release of a Contaminant-1D

Analytical Solution Bear, 1979

'Δ I

Continuous Release of a Contaminant-1D

Not advection dominated (Pe=1) Advection dominated (Pe=100)

Analytical Solution Van Genuchten and Alves (1982)

Petrov Galerkin Stabilization Results

'ATER RESOURCES

Galerkin (Pe=100) **Petrov-Galerkin** (Pe=100)

Petrov Galerkin Stabilization-Results-Pure advection case

Oscillations issue can be resolved at the expense of some numerical dispersion

Instantaneous Release of a Contaminant MT3D example-2D (Wilson and Miller, 1978): Pe=1

Uni-directional flow

Cell width along rows $(\Delta x) = 10$ m Cell width along columns $(\Delta y) = 10$ m Layer thickness $(\Delta z) = 10$ m Groundwater seepage velocity $(v) = 1/3$ m/day X-dir. only Porosity (θ) = 0.3 Longitudinal dispersivity = 10 m Ratio of transverse to longitudinal dispersivity $= 0.3$ Volumetric injection rate = $1 \text{ m}^3/\text{day}$ Concentration of the injected water $= 1000$ ppm Simulation time (t) = 365 days

$$
Pe_{xx} = \frac{u_x dx}{D_x}
$$

\n
$$
Pe_{yy} = \frac{u_y dy}{D_y}
$$

\n
$$
D_{xx} = \alpha_L \frac{u_x^2}{|V|} + \alpha_T \frac{u_y^2}{|V|}
$$

\n
$$
W = |V| = \sqrt{u_x^2 + u_y^2}
$$

\n
$$
D_{yy} = \alpha_L \frac{u_y^2}{|V|} + \alpha_T \frac{u_x^2}{|V|}
$$

 D_{xx} =10*(1/3)^2/(1/3)+0=10/3

 $D_{\rm vv}$ =0+10*0.3*(1/3)/(1/3)=0.3

 $Pe_x = (1/3)^*10/(10/3) = 1$

 $Pe_y = 0*10/(0.3) = 0$

 Pe_x =max(Pe_x , Pe_y) = 1

Concentrations - after 1 yr (Pe=1)

Release location (150 m, 150 m) dt=1 day, dx= dy=10 m

Analytical Solution by Wilson and Miller, 1978

Concentrations - after 1 yr (Pe=1)

Release location (150 m, 150 m) dt=1 day, $dx = dy=10$ m

Continuous Release-Concentrations - after 1 year (Pe=1) Uni-directional flow

Release location (150 m, 150 m) dt=1 day, dx= dy=10 m

Analytical Solution by Wilson and Miller, 1978

Continuous Release-Concentration Profiles after 1 year (Pe=1)

Release location (150 m, 150 m)

Continuous Release-Concentrations - after 1 year SUPG Stabilization (Pe=50)

Release location (150 m, 150 m)

Instabilities can be resolved at the expense of some numerical dispersion

MT3D Example : Diagonal Flow Field

Multi-directional flow

Colorado Rocky Mountain Arsenal (RMA) site-Konikow-1979 **SUTRA-simplified conceptualization**

FIGURE 3.- Observed chloride concentration. 1956.

VATER RESOURCES

CALIFORNIA DEPARTMENT OF

Figure 6.6. Idealized representation for example at Rocky Mountain Arsenal, and finite-element mesh. Upper shaded square is the pond, shaded rectangles are impermeable zones, and three circles are wells

Discharge concentration=1000 mg/l Aquifer thickness= 18 m Horizontal Dispersivity= 100 m Transverse Dispersivity=100 m Effective Porosity=0.3

Rocky Mountain Arsenal (RMA) site-MODFLOW simulation

MODFLOW Velocity Distribution MODPATH Distribution SUTRA-steady state concentrations

Summary & Next Steps

- Finite Element and Lagrangian based solutions for solute transport problems are developed and verified
- Next: Integration with IWFM
	- Time step level integration
	- Implement solute transport within streamflow module
	- Multi-species transport
	- Testing and verification with field data
	- Expected completion by Spring of 2024
- Long term goal: Density dependent flow model
	- Required for the saltwater intrusion modeling
	- Solute concentration impacts the flow field and vice versa-fully coupled run
	- Requires changing flow equation in IWFM code to account for variable density

