CALIFORNIA DEPARTMENT OF WATER RESOURCES

Development and Verification of
a Solute Transport Module for
IWFM

Uditha C. Bandara, Tyler Hatch, Emin C. Dogrul

Sustainable Groundwater Management Office



Overview

» Why solute transport modeling

» (Governing equations

» Challenges of solving governing equations
» Approach

» Comparison of numerical solutions with analytical solutions
» MT3D, SUTRA and other published solutions

» Application to a real world problem
» Rocky Mountain Arsenal site, Colorado

» Next steps
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Why solute transport modeling?
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» Water quality degradation and seawater intrusion are two
sustainable groundwater management indicators (Sustainable
Groundwater Management Act-SGMA, 2014)
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> Groundwater Sustainable Agencies (GSA) are required to |
Identify and manage potential water quality and seawater o 1
Intrusion issues
» Groundwater contamination due to use of agricultural fertilizers is
a common issue within the Central Valley, California
> Coastal groundwater basins are vulnerable for seawater intrusion
due to sea-level rise and climate change
> ldentifying and managing potential water quality and
seawater intrusion issues requires numerical tools that can
simulate solute transport through groundwater

> Currently IWFM does not have the in-built capability to
simulate solute transport and hence water quality or seawater
Intrusion
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Advection-Dispersion Equation for Porous Media

Advection

Dispersion

6= porosity of the aquifer (-),
C*= dissolved concentration of solute k [M/L3],

t=time [T],

D; ;= dispersion coefficient tensor [L?/T]-both hydrodynamics and molecular diffusions,
v;= linear pore water velocity [L/T] from a groundwater flow model,
qs= volumetric flow rate per unit volume representing sources or sinks [1/T],

CX=source or sink concentration of solute k [M/L3]



Approach

Water Quality Simulations

Flow Ml Transport

Solution Solution

One way coupled (loosely coupled)

Concentrations are small -> Does not impact
(<5 000 mg/l) the flow density
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Seawater Intrusion Simulations

Velocity

L

Flow Transport
Solution Solution

‘ Concentration"

Two way coupled (tightly coupled)

Higher concentrations -> Flow field is impacted
(>5 000 mg/l) by concentrations

Density dependent flow simulations



Challenges of solving Advection-Dispersion
Equation

» Governing Advection-dispersin equation
» hyperbolic when advection is dominant
» parabolic when dispersion is dominant

» No single numerical solution works for all conditions

» Many field conditions are advection dominated (Grid Pectet number, Pe>1)
» Numerical dispersion issue
» Spurious oscillation near sharp fronts (under and over shoot)
» Stabilization methods are needed for advection dominated
conditions in Eulerian methods such as Finite Elements

» Lagrangian methods-no numerical dispersion or spurious oscillations-more
computational time

M 1s the magnitude of the seepage velocity vector, LT

m“{‘n J“‘"’@, . - . 5 -
/ R P =— L 1s a characteristic length, commonly taken as the grid cell width, L;
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Stabilization methods of Finite Elements for
advection dominated cases

» 1-D: Petrov Galerkin (PG)

» Artificial diffusion Is added to overcome the instability near sharp fronts through
unwinding

» 2-D: Streamline Upwind Petrov Galerkin-SUPG (Brooks and
Huges, 1982)

» For 2D case excessive cross diffusion (perpendicular to the flow) in Petrov
Galerkin method corrupts the results

» Upwind effect is added only in the direction of flow-SUPG
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Instantaneous Release of a Contaminant-1D

Not advection dominated (Pe=1) Advection dominated (Pe=100)
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Continuous Release of a Contaminant-1D

Not advection dominated (Pe=1) Advection dominated (Pe=100)
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Petrov Galerkin Stabilization Results
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Petrov-Galerkin (Pe=100)
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Petrov Galerkin Stabilization-Results-

Pure advection case
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Instantaneous Release of a Contaminant
MT3D example-2D (Wilson and Miller, 1978): Pe=1

Uni-directional flow

_ - B u,dx Pe.. — uydy
Cell width along rows (Ax) = 10 m €xx = D, 2 D,
Cell width along columns (ﬁ}‘} = 10m " .
: u u
Layer thickness '[ﬁ:J = 10 m Dxx= ar |—;| + ar |_IJ/,|
. — 2 2
Groundwater seepage velocity (v) = 1/3 m/day  X-dir. only 5 5 where |V| = \/ux + Uy
u u
Porosity (8) = 0.3 D,,= a; ——+ oy ——
' SR T

Longitudinal dispersivity = 10 m
Ratio of transverse to longitudinal dispersivity = (0.3

5 D, =10*(1/3)"2/(1/3)+0=10/3
Volumetnic injection rate = | m'/day
Concentration of the injected water = 1000 ppm D,,,, =0+10%0.3%(1/3)/(1/3)=0.3

Simulation time (#) = 365 days

Pe,=(1/3)*10/(10/3)=1
Pe,=0*10/(0.3)=0

Pe,=max(Pey, Pe,) = 1
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Concentrations - after 1 yr (Pe=1)

Release location (150 m, 150 m) dt=1 day, dx=dy=10 m
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Analytical Solution by Wilson and Miller, 1978
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Concentrations - after 1 yr (Pe=1)

Release location (150 m, 150 m) dt=1 day, dx= dy=10 m

Concentration alnng the Inngitudinal direction at }F=15ﬂ m Concentration alnng the transverse direction at x=250 m
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Continuous Release-Concentrations - after 1

Release location (150 m, 150 m)
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year (Pe: 1) Uni-directional flow

dt=1 day, dx= dy=10 m
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Continuous Release-Concentration Profiles -
after 1 year (Pe=1)

Release location (150 m, 150 m)

Cencentration along the lengitudinal direction at y=150 m Concentration along the transverse direction at x=150 m
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Continuous Release-Concentrations - after 1 year
SUPG Stabilization (Pe=50)

Release location (150 m, 150 m)
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MT3D Example : Diagonal Flow Field
Multi-directional flow
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Colorado Rocky Mountain Arsenal (RMA) site-

K oni kOW' 1979 SUTRA-simplified conceptualization
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Rocky Mountain Arsenal (RMA) site-
MODFLOW simulation

MODFLOW Velocity Distribution MODPATH Distribution SUTRA-steady state concentrations
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SUPG-FEM Solution of Contaminant Transport { Lagrangian Particle Solution of Contaminant Transport  concentration

at the Rocky Mountain Arsenal Site at the Rocky Mountain Arsenal Site ey
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Summary & Next Steps

* Finite Element and Lagrangian based solutions for solute transport
problems are developed and verified

* Next: Integration with IWFM
— Time step level integration
— Implement solute transport within streamflow module
— Multi-species transport
— Testing and verification with field data
— Expected completion by Spring of 2024

* Long term goal: Density dependent flow model
— Required for the saltwater intrusion modeling
— Solute concentration impacts the flow field and vice versa-fully coupled run
— Requires changing flow equation in IWFM code to account for variable density
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