E

8

8

n

1-8-1

8

2

New Features in IWFM

CWEMF Annual Meeting Folsom, California April 17 – 19, 2023

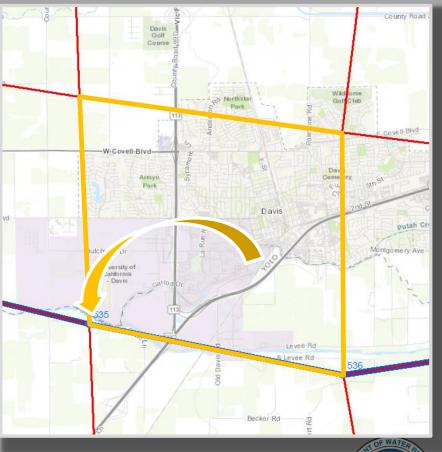
Emin Can Dogrul California Department of Water Resources

ň

٩

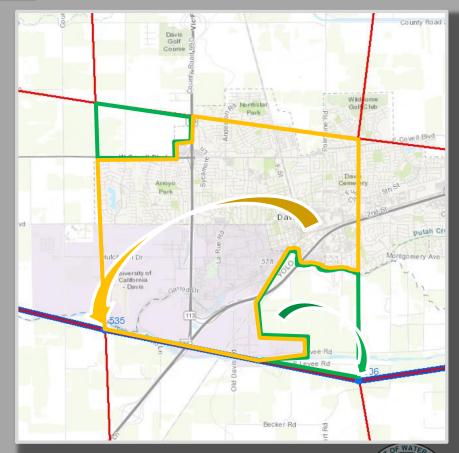
89

Outline


- New features
 - Treatment of surface flows
 - Stream evaporation
 - Improvements to wide-channel stream simulations
 - Improvements to IWFM-Ops
 - Delayed subsidence
- On-going developments
 - Asymmetric stream-aquifer interaction
 - Solute transport
 - 2-way interaction between the root zone and groundwater
 - Migration of ArcMap utilities to ArcGIS Pro
- Future developments

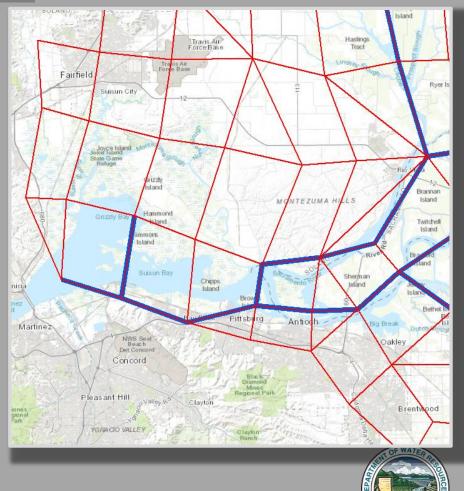
Treatment of Surface Flows

- Issue:
- All surface flows (agricultural and urban return flows, rainfall runoff, rice pond drainage) generated at a cell flowed to the same userdefined destination
- Inability to treat agricultural and urban surface flows separately (e.g urban water treatment plans versus agricultural return flows)



Treatment of Surface Flows

- Issue:
- All surface flows (agricultural and urban return flows, rainfall runoff, rice pond drainage) generated at a cell flowed to the same userdefined destination
- Inability to treat agricultural and urban surface flows separately (e.g urban water treatment plans versus agricultural return flows)
- New feature:
 - Surface flows from agricultural, urban indoors, urban outdoors, and native vegetation areas within a cell can flow into different destinations



Simulation of Stream Evaporation

- Stream surface evaporation can be a substantial water budget component (e.g. estimated 620 TAF/year in Central Valley)
- New simulation feature requires evaporation and stream surface area
- Two options available for surface area:
 - 1. As a function of wetted perimeter and stream reach length
 - 2. Provided by the user as time-series data
- Ability to simulate at only selected stream nodes

Improvements to Wide-Channel Stream Simulation

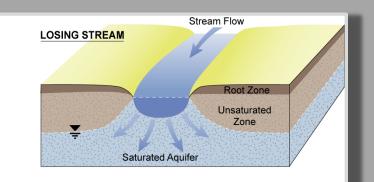
- Two options to define wetted perimeter for each groundwater node connected to a stream node:
 - 1. Allow IWFM to distribute wetted perimeter to individual groundwater nodes
 - 2. User defines wetted perimeter at each groundwater node

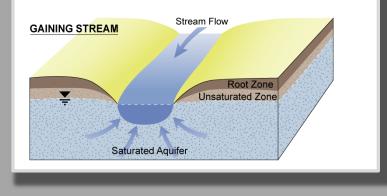
Improvements to IWFM-Ops

- Simulation of bypasses (method to represent flow bifurcation in IWFM) as part of surface water operations
 - 1. Upstream-flow driven bypasses (e.g. Yolo bypass)
 - 2. Downstream-demand driven bypasses (e.g. Glenn-Colusa Canal)
- ANN-based Water Supply Adjustment (i.e. closure terms) terms calculated dynamically for proper simulation of reservoir operations
- Improvements in referencing future water demands using time array notation (from 220 lines of WRESL code per diversion to 40 lines)

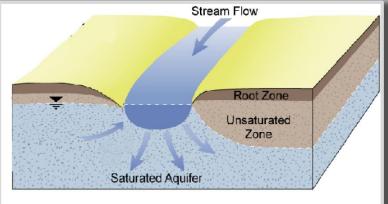
Other Improvements

- Simulation of delayed subsidence
 - Alternative to currently available instantaneous subsidence approach
 - MODFLOW-like approach with some modifications
 - Detailed presentation by Vivek Bedekar (SSP&A), Session 37, Wednesday, 3:15-5:00pm
- Improvements to run times
 - Improved parallel processing; up to 50% decrease in runtimes
 - Smoothing of Max / Min functions in simulating stream-aquifer interaction, groundwater pumping, drying/rewetting of groundwater nodes
 - Tweaks to compiler flags

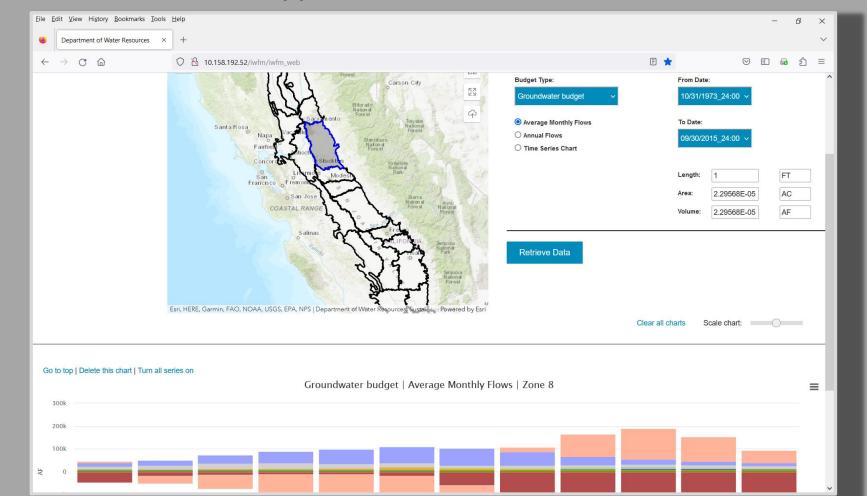

- Asymmetric stream-aquifer interaction
 - Theory developed by late Dr. Hubert Morel-Seytoux (1932-2022)



- Asymmetric stream-aquifer interaction
 - Theory developed by late Dr. Hubert Morel-Seytoux (1932-2022)
 - Traditional approach is to assume groundwater table is symmetric around streams



- Asymmetric stream-aquifer interaction
 - Theory developed by late Dr. Hubert Morel-Seytoux (1932-2022)
 - Traditional approach is to assume groundwater table
 is symmetric around streams
 - Different groundwater operations on either side of streams can lead to asymmetric stream-aquifer interaction
 - SGMA requires GSAs to quantify groundwater impact on streams
 - Detailed presentation by Giorgos Kourakos (UC Davis), Session 28, Wednesday, 8:00-9:45am



- Development of a solute transport module (Uditha Bandara)
- Physically-based 2-way interaction between the root zone and groundwater (Morteza Sadeghi)
- Migration of ArcMap GIS tools (Soil Data Builder, Mesh Generator, GUI) to ArcGIS Pro environment (Thi Pham)

• C2VSimFG / IWFM web application

Future Developments

- Simulation of SGMA-imposed constraints on groundwater operations in IWFM-Ops
- Implementation of Jacobian Free Newton Krylov method in IWFM for faster runtimes
- Dynamic simulation of agricultural crop acreages based on water supply availability and economics
- Simulation of multiple native vegetation classes

Questions?

