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Evaluation of Global Climate Models for California
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ﬂ)ynamically Downscaled Data

Downscaled with WRF

SSP 370

Hourly data for 37 variables
Dynamically consistent
Non-biased corrected
1980-2100

4 models

\“500 years of model data /

Types of Downscaled Data

3 km CA Domain
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ﬂtatistically Downscaled Data
* Downscaled with LOCA2

e SSP 245, 370, & 585

e Daily data for 8 variables**

* Hourly temperature at stations
e Biased corrected to observations
e 1950-2100
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* 15 models, 199 runs

\'10,000 years of model data /

*Variables: Tmin, Tmax, precipitation, diurnal
temperature range, RH min, RH max, specific humidity,
surface downward shortwave, vector winds
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WRF Dynamical Downscaled Data
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. 2-m temperature

. 2-m specific humidity

. Surface pressure

. 10-m u-component of the wind (grid relative)
. 10-m v-component of the wind (grid relative)
. Snow water equivalent

. Skin temperature

. Non-convective precipitation (cumulative)

. Convective precipitation (cumulative)

. Cumulative snowfall equivalent

. Diffuse downwelled solar radiation

. Surface upwelled solar radiation (all sky)

. Surface upwelled solar radiation (clear sky)

. Surface downwelled solar radiation (all sky)

. Surface downwelled solar radiation (clear sky)

. Surface upwelled longwave radiation (all sky)

. Surface upwelled longwave radiation (clear sky)
. Surface downwelled longwave radiation (all sky)
. Surface downwelled longwave radiation (clear sky)
. Surface runoff

. Sub-surface runoff
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WRF Dynamical Downscaled Results
CESM2 ssp370
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New, higher resolution training data uses WRF to interpolate
between stations for more realistic precipitation

Livneh et al. 2014 6 km (LOCA v 1) New 3 km training data set (LOCA v 2)

Same stations, but
using WRF to
interpolate
between stations
improves realism

Poor station
coverage and
simple interpolation
smears out
topographic effects
of Sierra Nevada
peaks
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New ensemble bias correction scheme better represents
extreme precipitation events

20-year return value of daily precipitation
LOCA v1 mean= 60.7 mm/day LOCA v2 mean= 74.3 mm/day
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https://doi.org/10.1175/JHM-D-22-0194.1

New hybrid downscaling scheme uses WRF-projected future

weather patterns at the end of the century

LOCA version 1:
Weather pattern
library from historical
observations

Downscaled result

LOCA version 2:
Weather pattern library
from end of century
WRF simulations

New method
limits the
stationarity
assumption




More data available to address stakeholder needs

1. More variables to answer stakeholder questions
e LOCA 1: Tmin, Tmax, P, 10-meter windspeed, daily min and max of relative humidity; downward solar
radiation
e LOCA 2: Tmin, Tmax, P, 10-meter windspeed; daily min and max of relative humidity; downward solar
radiation, 10-meter U, V wind components (vector wind), specific humidity

2. More emissions scenarios to explore possible futures
* LOCA1:2RCPs:4.5,8.5 (“medium-low” and “high”)
 LOCA 2: 3 SSPs: 245, 370, 585 (“medium-low”, “medium”, and “high”. Earth currently close to SSP 370)

3. More ensemble members available for stakeholders who need to evaluate natural variability
 LOCA 1: Only one ensemble member available
 LOCA 2: Up to 10 ensemble members (determined by what the original GCMs made available)

4. Potentially more hourly data available
* LOCA 1: Hourly temperature data at 32 stations
* LOCA 2: Hourly temperature data at 32 stations, potentially other variables and stations if stakeholders
have access to observed data they can share with us for training the model



Summary: LOCA version 2 improvements

* Improved, higher resolution training data set
* New approach better depicts effects of California’s topography; 3 km vs. 6 km in version 1

* Improved representation of precipitation extremes
* Critical for flooding and water management

* Hybrid downscaling scheme
* More realistic projections for coming decades
* Limits stationarity assumption

* More variables
* Supports a wider range of stakeholder applications

* More runs, multiple ensemble members
* Allows better understanding of uncertainty, natural variability, and extremes

* More emissions scenarios
» Better understanding of possible future human/societal/policy choices



Hydrologic Models
WRF-Hydro (Noah-MP)
VIC
SUMA

rain and snow \
‘ interception

3-layer snow . surface
runoff
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4 West-WRF models + 5 LOCA models
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Hydrologic Modeling & the Extremes

Annual Maximum Streamflow
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Monthly Precipitations Extremes in CMIP6

Sacramento Drainage
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NoCal simulations
exhibit greater increase
than SoCal

BUT SoCal exhibits
strong increase in
magnitude of >30%
historical mean annual
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Extremes Precipitation Projections in CMIP6

Most extreme precipitation will become more extreme
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Extremes Precipitation Projections in CMIP6

Most extreme precipitation will become more frequent

SFO ssp370 2075-2100 SAN ssp370 2075-2100
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Concluding Remarks

Wealth of high resolution data to examine climate change impacts in California.
 Dynamically downscaled data provide opportunities to look at more hourly data and
dynamically consistent events
* LOCA data provide ability to understand projections across a range of scenarios and
natural variability

LOCA Hybrid downscaling has improved to captured extreme precipitation better

Hydrologic modeling has expanded significantly since CA 4" Climate Assessment Data
* VIC, NOAH-MP (WRF-Hydro), SUMA
e (Captures stream flows well

Extreme precipitation projections in CMIP6 are similar to CMIP5 projections in that the
most extreme events will become more extreme and more frequent
* Difference between Norther and Southern CA in frequency versus magnitude of
extremes
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