

Shasta Tradeoff Analysis Using Position Analysis

Shasta Tradeoffs

- Higher Shasta Storage:
 - Increases Cold-Water Pool for temperature management
 - Increases the CVP's ability to meet the management season's demands
 - Increases the CVP's ability to meet the next water year's demands
- Maintaining High Storage:
 - Requires reducing Shasta releases by reducing the use of water
 - Increases the chance of spilling
- CVP Discretion:
 - CVP service contract allocations are already reduced in dry years, and there is limited relief in additional reductions
 - CVP storage is generally sufficient to meet demands in a single dry year.
 - In order to maintain sufficient carryover going into consecutive dry years, that water needs to come from elsewhere

Timeline of Operations - Shasta

Operation	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Hydrologic Forecast			*	Х	x	Х	Х	x	Х			
CVP Delivery Commitments					X	X	X	Х	X			
Temperature Management Plan							*	Х				
File for TUCP	x	X	x	60 days	X	X	X 60 days	X	X 60 days	X	X	Х
Storage Fill												
Storage Drain												
Storage Target Considerations							By WYT					By WYT
D1641 MRDO, EC, & X2												
ESA Flow Actions	Fall Flo	w Stabil	ity				Spring	Pulse				
ESA Temperature												
ESA Fall X2												AN & W

DRAFT-FOR DISCUSSION PURPOSES ONLY

Take Home Messages -we will populate as we go

- Seasonal planning occurs early in the season
 - Limited, uncertain data
 - Water year type is not known

Timeline of Operations – Fill Season

DRAFT-FOR DISCUSSION PURPOSES ONLY

Take Home Messages

- Seasonal planning occurs early in the season
 - Limited, uncertain data
 - Water year type is not known
- Fill Season:
 - Carryover from previous year and historical monthly inflow data (forecast hydrology available later on) are the only available information and reducing regulatory releases is the only knob to meet an end-of-April target.
 - Water year type is still not known construct goals that are based on the available information

Timeline of Operations – Management Season

- Delivery+Export: 175 438 TAF
- Excess DO: 0 15 TAF
- ⁷⁹• Other Costs: 33 107 TAF

- DRAFT-FOR DISCUSSION PURPOSES ONLY
- Estimate: Inflow (high confidence)
- Knob: Deliveries and regulatory releases

Carryover/Fill/Spill Tradeoffs

- 18 initial conditions (end of September carryover from previous year)
- 82 1-year traces for each initial condition
- 2035 CT hydrology

Operation	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
Hydrologic Forecast			*	x	x	x	х	x	x						*	x	x	X	Х
CVP Delivery Commitments					x	x	x	x	x								x	x	х
Temperature Management Plan							*	Х											*
File for TUCP	x	x	×	60 da	ys 🔭	×	60 da	ys 🛌 e	0 days	-	x	x	x	x	X	60 da	avs 🖈	×	60 days
Storage Fill																			
Storage Drain																			
Storage Target Considerations							By WYT					By WYT							By WYT
D1641 MRDO, EC, & X2																			
ESA Flow Actions	Fall Flow Stability						Spring Pulse						Fall Flow Stability						Spring Pulse
ESA Temperature																			
ESA Fall X2												AN & W							

DRAFT-FOR DISCUSSION PURPOSES ONLY

Take Home Messages

- Seasonal planning occurs early in the season
 - Limited, uncertain data
 - Water year type is not known
- Fill Season:
 - Carryover from previous year and historical monthly inflow data (forecast hydrology available later on) are the only available information and reducing regulatory releases is the only knob to meet an end-of-April target.
 - Water year type is still not known construct goals that are based on the available information
- Management Season:
 - Reservoir releases needed to meet regulatory criteria still have uncertainty in the management season.
 - The higher end of September target, the higher the fill next year, the less water we have for seasonal management; the more water supply loss including spills in the next winter