Future Scenarios Project Update: Vulnerability Study of the Central Valley under Likely 2020 Conditions

Acknowledgements

DWR Future Scenarios Team

Lew Moeller Abdul Khan Paul Shipman Mohammad Rayej Salma Kibrya Francisco (Paco) Flores

Stockholm Environmental Institute (SEI)

Jack Sieber Brian Joyce Charles A. Young

Kamyar Guivetchi Paul Massera Eric Tsai Jennifer Stricklin Jose Alarcon

CALIFORNIA WATER PLAN UPDATE 2023

DWR Climate Change Team Elissa Lynn **Romain Maendly** Wyatt Arnold **Alejandro Perez** Michael Weil

Water Plan Focus Group Francisco Guzman Megan Fidell Daya Muralidharan Hoa Ly + above categories

Many existing climate change studies are either very general, or very focused W WEAP: Central Valley - Paleo - Oct2022

The WEAP modeling system provides a physically based integrated model to assess climate change impacts on California's water at regional and statewide scales.

Population growth will affect demands on water supply in ways not yet considered

The future scenarios project uses population growth numbers as forecasted by the California Department of Finance and informed by local government development plans.

ENHANCEMENTS TO FUTURE SCENARIOS FROM WATER PLAN 2018 TO WATER PLAN 2023

Analysis Technique

Downscaled GCMs provided high level trend analysis from 2006-2100

Decision scaling provides regional risk-based insights at current (2020) and future (2070) level of development

Delta Representation

Update 2023 includes:

- Delta Biological Opinions
- Coordinated Operations Agreement
- Sea level rise ANN used by Cal-SIM (1.8 feet) for 2070 level of development

Land Use

Update 2018

- Native lands (NLCD 2006)
- Agricultural lands (county surveys)
- Projected future land use

Update 2023

- Native Lands (NLCD 2016)
- Agricultural Lands (Statewide land use 2018 based on Land IQ remote sensing data)
- Projected future land use for urban only

Water Use

Update 2018

- Based on 2006 and 2009 data
- Included background conservation projections for future and different adaptation strategies level of conservation

Update 2023

 Updated based on 2015 Urban Water Management plan data

 Includes current background conservation as a result of already enacted laws, but does not include adaptation strategies or pending legislation

Water Plan Update 2023 Vulnerability Metrics

- 1. Surface Water: End of water year surface water storage
- **2. Environmental:** % of time Instream Flow Requirement met
- 3. Agriculture: % of demand met
- 4. Urban: % of demand met
- 5. Flood: 90th percentile (10% exceedance) monthly flows at control points
- 6. Groundwater: Groundwater % of total supply

Future Scenarios Update 2023 by the numbers

- 1 Integrated Hydrologic Model (CVPA WEAP)
- 1000+ updated model files
- 2 levels of development analyzed (2020 and 2070)
- 946 model runs
 - 43 climates
 - 1100 years of simulation per climate
- 33,000+ output files for post processing
- 138 detailed response surfaces
- 68 GCMs processed for probability weightings
- 1000s of Monte Carlo simulations to develop cumulative probability plots
- 3 Hydrologic Regions with assessments of vulnerability in 6 aspects of water management

ative probability plots oility in 6 aspects of water

ANALYSIS PROCESS TO DEVELOP METRICS

Decision Scaling

- A stress test under the full range of relevant and credible changes
- Estimate risk conditional on climate projectionbased evidence

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

Likelihood of futureperformance worse than threshold

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

FUTURE SCENARIOS UPDATE 2023 RESULTS

Results will be based on 0 to 5°C change in temp. and -30% to +30% change in Precipitation

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

CALIFORNIA WATER PLAN UPDATE 2023

The black line represents a performance threshold, for this study it is a baseline performance.

Blue areas generally indicate improved system performance

CALIFORNIA WATER PLAN UPDATE 2023

Red areas generally indicate areas of decreased performance.

ALIFORNIA WATER PLAN UPDATE 2023

The contours represent the probability of occurrence based on GCM projections

ALIFORNIA WATER PLAN UPDATE 2023

Response surfaces can be used to look at any combination of temperature and precipitation you are interested in regardless of probability of occurrence

CDFs provide a probabilistic framework for the outcomes.

CDFs provide a probabilistic framework for the outcomes. These let you identify most likely conditions ...

CDFs provide a probabilistic framework for the outcomes. These let you identify most likely conditions but they also let you set your own risk thresholds.

Metric 2 Environment – Merced River IFR

CALIFORNIA WATER PLAN UPDATE 2023

- %

Metric 2 Environment – Merced River IFR

Metric 3 Agriculture – PA 509

DEPA

This area encompasses the west portion of C2VSIM Subregion 6 or Depletion Study Area (DSA) 65 and represents Woodland, Davis, Dixon, and Vacaville areas.

Metric 3 Agriculture – PA 509

Metric 4 Urban – PA 606

This area is the same as Subregion 10 of C2VSIM or Depletion Study Area (DSA) 49A and represents the Delta-Mendota Basin and includes Los Banos, Newman, Gustine, Patterson and Firebaugh.

Metric 4 Urban – PA 606

Metric 5 Flood Potential – Vernalis

Metric 5 Flood Potential – Vernalis

Metric 6 GW System – PA 507

9	42.0	
	40.5	
	39.0	This area is the same as C2VSIM Subregion 5 or
	37.5	and represents Eastern
	36.0	Sacramento Basin Valley foothills near Sutter Buttes
	≫ 34.5	(North and South Yuba, East Butte and eastern parts of
	33.0	West Butte and Sutter
	31.5	102 102 102 102 102 102 102 102
	30.0	103 502 708 Reno Falon
	28.5	505 104 511 Carco City Walker River Reservation 802 Finder Reservation
		201 500 603 604 With Bent Period

608

610

Metric 6 GW System – PA 507

Metric 1 – All Response Surfaces

RS_Berryessa_rel_p

RS_Don Pedro Reservoir_rel_p

RS_Lake Success_rel_p

Percent Change in Black Butte | End of Water Year Deptembe Surface Starsey

RS_Black Butte_rel_p

RS_Eastman_Hensley_rel_p

RS_Millerton Reservoir_rel_p

RS_San Luis_rel_p

RS_Camanche Reservoir_rel_p

RS_EBMUD Terminal Reservoirs_rel_p

RS New Bullards Bar rel p

RS_Shasta Reservoir_rel_p

RS_Camp Far West_rel_p

RS_Folsom Reservoir_rel_p

RS_New Hogan Reservoir_rel_p

RS_Tulloch_rel_p

RS_New Melones Res_rel_p

RS_CCSF Water Bank_rel_p

RS_Isabella Lake_rel_p

RS_Oroville Reservoir_rel_p

RS_Pardee Reservoir_rel_p

Metric 2 – All Response Surfaces

Metric 3 – All Response Surfaces

EN305_East | Prequency of Ap Delivery Shortages

RS_PA506_East_abs

MALL, North | Prequency of Ag Delivery

RS_PA602_North_abs

Weills, Renth | Prequency of Ap Deliver

RS_PA503_North_abs

RS_PA510_abs

RS_PA607_abs

RS_PA503_South_abs

RS_PA511_abs

RS_PA608_abs

RS_PA602_South_abs

RS_PA706_South_abs

CALIFORNIA WATER PLAN UPDATE 2023

RS_PA507_East_abs

RS_PA603_North_abs

RS_PA507_West_abs

RS_PA603_South_abs

RS_PA703_North_abs

RS_PA509_abs

RS_PA606_abs

RS_PA703_South_abs

Metric 4 – All Response Surfaces

RS_PA501_abs

RS_PA507E_abs

RS_PA602_abs

RS_PA608_abs

RS_PA502_abs

RS_PA507W_abs

RS_PA603_abs

RS_PA609_abs

RS_PA705_abs

RS_PA503_abs

RS_PA508_abs

RS_PA603N_abs

RS_PA609N_abs

RS_PA504_abs

RS_PA509_abs

RS_PA603S_abs

RS_PA609S_abs

RS_PA708_abs

RS_PA510_abs

RS_PA604_abs

RS_PA610_abs

RS_PA709_abs

RS_PA506_abs

RS_PA511_abs

RS_PA606_abs

RS_PA702_abs

RS_PA710_abs

RS_PA507_abs

RS_PA601andCC_abs

RS_PA607_abs

RS_PA703_abs

Metric 5 – All Response Surfaces

RS_AR-FR_rel_p

RS_FR-OR_rel_p

RS SR-FRin rel p

RS_KR-PF_rel_p

RS SR-RV rel p

recent Change in S. S. at Rin Units

Sacramento HR

- 1. Folsom Reservoir Outflow
- 2. Oroville Reservoir Outflow
- 3. Shasta Reservoir Outflow
- 4. Confluence of Feather and Sacramento River
- 5. Confluence of American and 5. Den Pedro Reservoir Outflow Sacramento River
- 6. Sacramento River at Rio Vista
 - 7. New Bullards Bar Outflow

- 1. Lake McClure Outflow

- Outflow

CALIFORNIA WATER PLAN U

Metric 6 – All Response Surfaces

Note: Not all PAs had access to GW which is why not all PAs are shown

Metric 1 – All CDFs

CDF_Berryessa_rel_p

CDF_Don Pedro Reservoir_rel_p

CDF_Lake Success_rel_p

CDF_Black Butte_rel_p

CDF Eastman_Hensley_rel_p

CDF_Millerton Reservoir_rel_p

CDF_Camanche Reservoir_rel_p

CDF_EBMUD Terminal Reservoirs_rel_p

CDF_New Bullards Bar_rel_p

CDF_Folsom Reservoir_rel_p

CDF_New Hogan Reservoir_rel_p

Metric 2 – All CDFs

Metric 3 – All CDFs

CALIFORNIA WATER PLAN UPDATE 2023

Metric 4 – All CDFs

spected association (2017)

0.089

0.016

0.017

0.016

0.015

0.00

0.012

0.007

228.00

98.95

99.98

99.97

99.96

10.15

99,94

99.93

-

internet that the 100 Percent of the 11 ft

PASO2 | frequency of Urban V +9.999000000599217 Shartages [%]

CDF_PA501_abs

CDF_PA507E_abs

PM808 | frequency of Urban Water Delivery Shortwaes (%)

40 60 80

60

CDF_PA704_abs

CDF_PA608_abs

PATO4) frequency of Urban Water Derivery Shortages (%)

200.94

32,36

AGE & Barretter, 1981 PAL (at Personal to 2012) A Case for large to 2012 A (at Personal to 2012) A

PARCE | Prequency of Urban Water Delivery Shortages (%)

60 P

80

40

CDF_PA609_abs

PA705 | frequency of Urban Water Delivery Shartages (%)

40 60

CDF_PA705_abs

40 60 80

CDF_PA502_abs

CDF_PA503_abs

338.36

95.98

39,36

10.14

28.92

199,90

06.00

338.96

99.98

35.10

20.5

14.15

39.30

10,38

POINT Reasons, 1021

2010 Boardine, 2401 tak Parcantile 32,42

Caper Test House: 1061%

2021 Basetine 108 (%) on Percentile 20, 79 % Capethel News (McChill on Percentile 10, 94 %)

A Present to Market

20

40 60 50 mentatra Distability (%)

CDF_PA603N_abs

196059N | Frequency of Urban Water Delivery Shortages [%]

20 40 60 80 Non-Exceptance Probability (%)

CDF_PA609N_abs

PA106 | Requercy of Urban Water Delivery Shortages (%)

40 60 f

CDF_PA706_abs

N304 | frequency of Urban Water Delivery Shortages (%)

300.00

95.2

95,98

99.9

20.34

2018 disactive: 1687

JULE Baseline: 2011

Calentine Univer 198 (%) of Percentile UP (3 %)

spectral desce. In I

98.25

-99,98

95.3

99.95

Experience (Science (Science)) on Presentation (B., 11 S.)

20

40 60 80

40 60 80 readance Probability (%)

60

40

CDF_PA708_abs

CDF_PA609S_abs

Pk706 (Prequency of Urban Water Delivery Shertages (%)

CDF_PA603S_abs

M6025 (Prequency of Urban Rober Delivery Shortages 1%)

Metric 5 – All CDFs

Metric 6 – All CDFs

Note: Not all PAs had access to GW which is why not all PAs are shown

Sac River HR spider plot

of 2020 Baseline/Threshold

- 2020 Conditions
- 2070 Conditions as compared to 2020

CALIFORNIA WATER F

Sac River HR spider plot

Sacaramento | All Metrics: 2070 Expected Value as Per of 2020 Baseline/Threshold

- 2020 Conditions
- 2070 Conditions as compared to 2020

CALIFORNIA WATER F

rcentage		
rement		
100 Erd of Water Year (September) Surface Storage % gap compared current conditions		
ntributions oan sectors		

Sac River HR spider plot

of 2020 Baseline/Threshold

- 2020 Conditions
- 2070 Conditions as compared to 2020

ALIFORNIA WATER P

In most likely 2070 conditions, the Sacramento **River Hydrologic** Region will only have 90% of the water in storage compared to current average conditions.

San Joaquin River HR spider plot

San Joaquin | All Metrics: 2070 Expected Value as Percer of 2020 Baseline/Threshold

- 2020 Conditions
- 2070 Conditions as compared to 2020

ntage	۱
nent	
End of Water Year (September) Surface Storage	
ibutions sectors	

Tulare Lake HR spider plot

- 2020 Conditions
- 2070 Conditions as compared to 2020

CALIFORNIA WATER PLAN UPDATE 2023

Tulare All Metrics: 2070 Expected Value as Percentage of 2020 Baseline/Threshold	
Percent of Agricultural Demand Met	
90th Percentile Streamflow Percent groundwater contributions to combined Ag and Urban sectors	

Future Scenarios Update 2028

- Improved model representation
- Improved metrics
 - Are these metrics informative or are there improved metrics that could be used?
- Increased spatial coverage
 - Which regions of California would you be most interested in seeing this analysis extended to?
- Inclusion of adaptation strategies to mitigate future vulnerabilities
 - What adaptation strategies would you be most interested in seeing for **Update 2028?**

