AEM Data Applications for Improving Stratigraphy of a Flood-MAR Model CWEMF Annual Meeting 2023 April 17, 2023

Outline

- Goals and Metrics of Success
- Defining a Lithology-Based Layer
- Incorporation of AEM data
- Summary of Findings

FloodMAR-San Joaquin Simulation Model

- Total model area = 4,530 sq miles
- Avg element area = 340 acres
- 100 stream reaches
- Monthly time step
- Modifications from C2VSimFG:
 - Streams system
 - Water demand
 - Water supply
 - Aquifer layering

Better understand impacts to:

Surface-Groundwater Interactions Groundwater Dependent Ecosystems

Domestic Wells

Metrics of Success

Develop **regional approach** to layer building, with local refinements that improves upon existing layering approach

Ensure smooth transitions between model layers and data source zones, based on **subsurface data**

Adapt approach to the FloodMAR project schedule

Develop a framework that can inform future applications and models

Existing C2VSimFG Stratigraphy

- Based on CVHM texture model, plus additional well logs
- Existing Layer 1 is too thick for the goals of this effort

Subbasin	Minimum Layer 1 Thickness (ft)	Maximum Layer 1 Thickness (ft)	Average Layer 1 Thickness (ft)
Eastern San Joaquin	147	966	326
Modesto	106	587	221
Turlock	66	371	178
Merced	42	627	163
Chowchilla	53	276	157
Madera	82	569	220

Source: DWR

Stratigraphy Modifications

- Refined stratigraphy with a sharper focus on the shallow subsurface to develop a lithologically-based new Layer 1 representing shallow alluvium
- Data Sources Available:
 - California Geological Survey geologic maps
 - USGS Corcoran Clay depth and thickness
 - GSP HCMs and Cross Sections best available review of literature
 - Provisional Inverted AEM dataset newly available!

What exactly is "alluvium"?

"A general term for clay, silt, sand, gravel or similar unconsolidated detrital material", deposited during comparatively recent geologic time by a stream or other body of running water, as a sorted or semi-sorted sediment..."

- USGS, 2023

Source: (Poole and Sims, 2007)

*"Detrital material" in this context refers to particles derived from pre-existing rock through weathering/erosion

Which suite of formations best represent alluvium deposits for FloodMAR applications?

Shallow

Deep

Source: California Geological Survey

Ideal Layer has:

- Useful extent across model area
- Useful thickness in basin areas and along streams
- Captures coarse deposits that interact with surface
- Includes formations of similar alluvial rock types
- Regionally consistent

Most "young" and "old" alluvium

- Modesto ۲
- Riverbank ۲
- Turlock Lake (above Corcoran) ۲
- Tulare (above Corcoran) ۲
- Victor ۲
- Un-named young fan deposits ۲

Laguna

included

Limitations of a Lithology-Based Layer

- Inconsistent studies across large model area
 - Level of detail
 - Interpretation of formations
- Ideal formation depths are too shallow in some areas (<20 ft) and too deep in others (400 ft +)
 - Corcoran Clay falls within alluvial deposits at about 200 ft at San Joaquin River
 - Difficult to meet all modeling requirements

Add Modeling Assumptions

Corcoran Clay At each groundwater node:

Layer 1 Thickness = Min(**150 feet** or ½ * (Depth to Clay))

Results in:

- Min Thickness: 20 ft
- Max Thickness: 150 ft

Streams

At each stream node, to support IWFM computations and convergence, :

Min. Layer 1 Thickness at stream node* =

Stream Depth + 20 feet

Results in:

- Min Thickness: 25 ft
- Max Thickness: 175 ft

*Rounded up to closest multiple of 5 to be sure condition will be met by an interpolation.

Opportunity to Use Provisional Resistivity Data

• Benefits

- Relatively continuous resistivity data
- Higher resolution than published cross sections
- Considerations
 - Challenging to translate resistivity data into formations
 - Project schedule and budget
 - Water quality and degree of saturation also impact resistivity
 - Datasets are not fully available yet

Validate and Refine Lithology-Based Layer

Layer 1 defined based on mapped lithology (top of Laguna Formation)

Applied modeling assumptions for:

- Areas above Corcoran Clay
- Minimum thickness at streams
- Minimum model area thickness

Based on observed physical attributes

Use provisional resistivity data to validate assumptions and inform smoothing

Prioritize Areas for Validation (and Refinement)

*Domestic well dataset development currently in progress by Earth Genome

Sources: (Klausmeyer, K., Howard J., Keeler-Wolf T., Davis-Fadtke K., Hull R., and Lyons A., 2018), DWR, Published GSPs

Visualize Datasets Together

Visualize Datasets Together

Prioritize Areas for Validation (and Refinement)

*Domestic well dataset development currently in progress by Earth Genome

Sources: (Klausmeyer, K., Howard J., Keeler-Wolf T., Davis-Fadtke K., Hull R., and Lyons A., 2018), DWR, Published GSPs

Example Validation

Coarser Fresher water Less saturated

Finer More saline More saturated

Example Refinement

Important to Note:

- Interpretations of resistivity data
 were made very cautiously
- Degree of saturation was considered
- Water quality was NOT considered

Example Refinement

- Sudden 50-70 ft drop at western river crossing could be smoothed out.
 - Relatively consistent resistivity measurements in this area
 - Above water table

Pre-Refinement

Example Refinement

AEM

Post-Refinement

Final New Layer 1 Thickness

Min Thickness: 20 ft Max Thickness: 175 ft Average Thickness: 69 ft

Note: Nodes without Layer 1 have thickness = 0 ft

Integration into FMSJSim

Integration into FMSJSim

Findings

- New Layer 1 represents shallow alluvium above the Laguna Formation, with modifications for:
 - Modeling constraints
 - Depth to Corcoran Clay
- Divided former Layer 1 into two distinct functional layers

Findings

- Can use even provisional AEM resistivity data to validate lithologybased layer and refine as appropriate
- New layer improves evaluation of GDEs and stream-aquifer interactions

Future Work: Use full geophysical analysis, once completed by DWR, to support future modeling

Thank you!

Special thanks to the rest of our team who contributed to this presentation:

- Dominick Amador: Project Manager
- Jim Blanke: Technical Lead
- Jack Baer: AEM Data Processing and Visualization
- Sercan Ceyhan: Calibration Figures

Emily Honn, GIT <u>ehonn@woodardcurran.com</u> 213.223.9475