

April 17 2023

From Airborne Electromagnetic (AEM) Data to Hydrogeologic Conceptual Models (HCMs)

PRESENTED BY

Jack Baer, P.G. Sercan Ceyhan

Outline

- →AEM Introduction
- → Project Overview
- → Literature Review
- →AEM2HCM Tool Development
 - Machine Learning Model Development
 - Preliminary Results
 - Sensitivity Analysis
- →Next Steps

Airborne Electromagnetic Data

→Helicopters with geophysical instruments fly along survey lines, collect data

 \rightarrow Data + physics & math \rightarrow 2.5D model of subsurface electrical resistivity

Project Overview

- → **Overall Program Goals:** Technical assistance to GSAs and other local agencies in utilizing AEM data in a cost-effective and standardized manner
 - Facilitate use of AEM data by GSAs and others in improving sustainable groundwater management

→Project Purpose: Develop workflow and tool(s) to utilize AEM survey data in enhancing hydrogeologic conceptual models and numerical groundwater models

- Preliminary research into existing workflows and best practices for:
 - » Interpreting and using AEM data to enhance HCMs
 - » Parameterizing numerical models using AEM data

Project Plan

→ Solution: Build a machine learning model to aid in the development of hydrostratigraphic models from AEM data – AEM2HCM Tool

→Why machine learning?

- AEM inverse models are non-unique
- Automatic interpretation enables many HCMs to be developed and tested in a groundwater model
- Enables stratigraphic calibration with a parameterization utility (e.g. PEST), stratigraphic sensitivity and uncertainty analysis

Learning Styles Unsupervised vs. Supervised

Supervised Learning 먗칥	Unsupervised Learning	
Labelled	Not labelled	
By Proper Guidance (Kind of Teacher)	No Guidance (Self Learning)	
Explicitly learning model	It Identifies the patterns	
Predicts the outcome/future	Not Predict nor find anything specific	

- →Supervised more robust, more control, but requires ample training data
- → Difficult to compile sufficient training data for geologic interpretation from AEM
 - Few publicly available datasets that include hydrogeologic conceptual models
 - AEM-lithology relationships highly variable locally, also dependent on equipment calibration and non-unique interpretations by contractor (often qualitative)
- →Here, used an unsupervised approach

Relevant Literature Marker et al., 2015

Identify locations with similar lithologic properties (e.g. sand, silty sand, clay)

WHAT: Unsupervised machine learning modelHOW: K-Means clustering of resistivity & clay fraction modelsGOAL: Lithologic modeling

Relevant Literature Bugge et al., 2020

Identify generalized strata/horizons (e.g. formations)

WHAT: Unsupervised machine learning model

HOW: Image processing + HDBSCAN clustering of seismic reflection data (seismic cube)

→ Features: Amplitude, Texture, Two-Way Travel Time

GOAL: Stratigraphic modeling

AEM2HCM Tool Development Thought Process

Feature Selection and Engineering What Makes a Hydrostratigraphic Unit?

Goal: Identify plausible hydrostratigraphic units from AEM data

Properties of Hydrostratigraphic Units

Identical Geologic Superposition

Generalized Layers with Similar Lithologic/Hydrologic Properties

Boundaries Often Marked by Sharp Contacts with Dissimilar Units

Feature Selection and Engineering What Makes a Hydrostratigraphic Unit?

Available Features

- Easting/Northing
- Elevation
- Depth
- Inverse Model Layer Number
- AEM Resistivity Value
- Clay Fraction Value
- Boring Logs

Goal: Identify plausible hydrostratigraphic units from AEM data

Properties of Hydrostratigraphic Units

Identical Geologic Superposition

Generalized Layers with Similar Lithologic/Hydrologic Properties

Boundaries Often Marked by Sharp Contacts with Dissimilar Units

Feature Selection and Engineering Selected Features

Available Features

- Easting/Northing
- Elevation
- Depth
- Inverse Model Layer Number
- AEM Resistivity Value
- Clay Fraction Value
- Boring Logs

Domain Knowledge

Statistical Analysis

Trial-Error

Cal - Depth

Inverse Model Layer Number

Selected Features

- AEM Resistivity Value
- Clay Fraction Value
- Boring Logs

Selecting a Clustering Algorithm K-Means vs. GMM vs. (H)DBSCAN

Property	K-Means	Gaussian Mixture Model	(H)DBSCAN
Class Probabilities (Soft Clustering)	No	Yes	Yes
Cluster Geometries	Simple	Relatively Complex	Very Complex
Speed (Large Datasets)	Fast	Medium	Slow
Memory Efficiency	Good	Medium	Poor
User-Specified K Clusters	Yes	Yes	No

AEM2HCM Tool Putting It All Together

AEM2HCM Examples Butte/Glenn

Line 710601

Note – layers in this example were clipped to class probability > 0.5; n_layers was manually set to 4; CF is a pseudo-CF

Note – layers in this example were clipped to class probability > 0.5; # layers was manually set to 4; CF is a pseudo-CF

Manual

Tool is hit or miss at identifying Lovejoy Basalt – may perform better w/ n_layers=5

AEM2HCM Examples Cuyama Valley

Line 100901

Note – layers in this example were clipped to class probability > 0.5; n_layers was manually set to 3

HCM Tool Development Key Takeaways

→Tool-informed HCM development will be crucial to maximizing the effectiveness of AEM data

- Will allow for numerous uncertainty analyses
- Will allow for optimum calibration
- Will enable non-geophysicists to make optimum use of data
- →AEM2HCM has shown great promise to date
 - Some challenges remain with enforcing stratigraphic principles

Testing/Sensitivity Analysis

- →Initial assessment of the tool's capabilities, strengths, and weaknesses
- →Looking at changes resulting from:
 - Number of layers
 - Elevation weighting
 - Covariance type
 - Filter settings

Testing/Sensitivity Analysis

Layer Testing

- →Very sensitive to the number of layers (clusters)
- → Number of layers corresponds to the number of distinct lithologic types to be identified, **not** the actual number of hydrostratigraphic units it will find
- → Both test datasets responded best to 3-4 layers, beyond that overfit to elevation

- Line 730300

Elevation Weighting Inputs (Features) Preprocessing Scaling Clustering Postprocessing Notes Inputs \rightarrow Gaussian LN(|dRes/dDepth|) (Res) Recombine(Rec) Remove Apply Filter Clipped Mixture Clay Fraction (CF) and Scale (Sc) Noise/Postprocess nverse Model Layer (**Lyr**) **Regular Grid** Model

- →Weighting features is generally **not** considered best practice in ML, but does offer some interesting possibilities here
- →Currently only testing weights on *elevation* feature
 - Very high weight \rightarrow pancake-style layers loosely based on material types
 - » May be useful for GW modelers
 - Very low weight → lithologic-style model
 - » May be useful for geologists
 - Weight of $1 \rightarrow$ can approximate stratigraphic units
 - » May be useful for modelers and geologists alike
- →Weighting may also help prevent overfitting to depth when the desired number of layers is large

Effects of Elevation Weighting Line 730300 – Layers = 4

AEM2HCM Preliminary Tool Development

Edit View Sign Window Help

Monitor Execution AEM2HCM АЕМ2НСМ A Machine Learning Tool for Building Hydrogeologic Conceptual Mo<u>dels from</u> Airborne Electromagnetic Data MODEL BUILDER oading data... * Processing for Line 0 * Processing for Line 100101 * Processing for Line 100201 * Processing for Line 100301 * Processing for Line 100401 Processing for Line Processing for Line Processing for Line Processing for Line Processing for Processing for L Processing for Line * Processing for Line 02101 102201 102301 itting cluster model lotting...

* Plotted cross-section for Line 0 * Plotted cross-section for Line 100101 * Plotted cross-section for Line 100201

Export interpreted cross-sections to **PDF** reports

⑦ ④ 11 / 23 ▶ ⑦ ○ ⊕ 59.2% · ☑ · Ţ □ ₽ ∠ & ⑦ □ Q.

Next Steps

- → Refine user interface and 3D visualization tools
- →Interpolation from fence diagram to 3D model
- →Allow incorporation of additional features by the user
 - Borehole data? Challenge variable spatial resolution
- →Design algorithm to split clusters that contain distinct but lithologically similar units; enforce geologic principals
- →Generate input files for IWFM and MODFLOW
- →Test resulting stratigraphy in existing groundwater model; assess effects on model water budgets and calibration
- →Implement a workflow for quantifying the uncertainty of the resulting model

Jack Baer, PG Hydrogeologist

jbaer@woodardcurran.com Solution 916.583.8917

Thank you!

OF CALIF

801 T Street Sacramento, CA 95811

woodardcurran.com