

Effects of Levee Breaching on the Hydroecology of Suisun Marsh and the Delta

CWEMF Presentation Scott Burdick 6 Apr 2022

Overview

- Suisun Marsh ecological importance
- Levees breach risk
- Hydrodynamic simulation of levee breach scenarios
- Consequences of breaches
- Joint project with Suisun Resource Conservation District
 - John Takekawa (SRCD)
 - Richelle Tanner (Chapman University)

Suisun Marsh Ecological Importance

- Suisun Marsh is important ecologically
 - Hosts endangered species
 - Delta Smelt
 - Salt Marsh Harvest Mouse
 - Soft Bird's Beak
 - 200 species of birds
 - 320 vertebrate species
- Part of the Upper San Francisco Estuary
- Tidal wetlands
- Managed wetland habitat
 - Duck ponds

Suisun Marsh Levees

- Levees in Suisun Marsh are maintained by individual landowners
 - Not part of Federal Levee Protection Program
- Under increasing stress from:
 - Sea level rise
 - Increasing king tides
 - Increased frequency of extreme rainfall events
 - erosion

1998 Flood Event with 11 Levee Breaches (Fig from Enright, 1999)

Project Objectives

- Explore consequences of levee breaches
 - Hydrodynamic
 - Water Quality
 - Ecological Consequences
- See impact of geographical location of breaches
- See impact of time of the year

Simulations

- Simulations run with the RMA Bay-Delta Model
 - 2D depth-averaged finite element model
 - Developed over 20 years
- Simulated 2009
 - Water year type Below Normal
- Simulate hydrodynamics (water levels, velocities), EC, water temperature

Levee Breach Scenarios

Heatmap Figure

- Base plot shows simulation results for a given metric (e.g., monthly average salinity) without any levee breaches
- Heatmap plot shows change from Base conditions for a given levee breach scenario (as a %, or absolute value)
- Monthly averaged point values interpolated over a 10m regular grid

Results – High Water Levels

- Breaches can decrease mean high water locally
- Breaches off Grizzly or Honker Bay generally saw little/no decrease
- Breaches up in the marsh saw large decreases (up to 0.5 m)
- Ecological consequences:
 - Breached area creates novel intertidal or subtidal habitat
 - But may decrease existing intertidal habitat
 - Impacts plant recruitment, shorebird foraging

Results – Low Water Levels

- Breaches can increase mean low water locally
- Differences between breaches off Grizzly or Honker Bay vs. in the marsh similar to high water level impacts
- Impacts to managed wetlands
 - Harder to drain ponds in spring
- Ecological consequences:
 - Increase in inundated areas
 - Loss of intertidal marshes

Results – Net Flow

- Breaches can change net flow splits through Montezuma Slough and Suisun Cut
- For breaches off Montezuma Slough, less net flow from Sacramento River into Montezuma
- Breaches in NW marsh increase Montezuma Slough flow
- Ecological Consequences
 - Salinity changes from Sacramento/Bay split
 - Transport and plant recruitment

Results – Tidal Excursion

- Tidal Excursion the distance water sloshes back and forth with the tides
- Increase along Suisun Slough for breaches along Grizzly Montezuma side
- Similar increases in NW marshes off Joice
- Ecological consequences:
 - Salinity
 - Sediment transport
 - Changes in travel distance through a reach
 - Predator-prey interactions
 - Dispersive transport

Results – Salinity, Local Impacts

- Breaches change net flows, tidal excursion
- Breaches typically increase tidal mixing/dispersion on the seaward side, decrease dispersion on landward side
- Generally results in significant increases in Suisun Marsh max salinity
- Ecological consequences:
 - Range of tolerance for different species
 - Higher salinity potentially leads to decrease in microbial C and N cycling
 - Changes are region dependent

Results – Salinity, Regional Impacts

- Van Sickle Island breach can significantly increase salinity in Delta through tidal pumping mechanism
 - Water supply and regulatory impacts
- Other levee breach scenarios didn't show much increase in salinity intrusion to Delta
- Tidal pumping mechanism
- Potentially beneficial from salinity reduction in North Delta
- X2 at this time about 87 km

Tidal Pumping Animation

Results – Water Temperature

- Adding intertidal area can cause local cooling during summertime
 - Water inundates marsh at night, loses heat, returns to channel
- Changing net flows and dispersive transport impacts water residence times
 - Impacts exchange with cooler Bay water
- Ecological consequences:
 - Range of tolerance for specific species
 - Impacts on metamorphic lifecycles
 - Effects on microbial nutrient cycling (C, N)
 - Greenhouse gas emissions

Conclusions

- Suisun Marsh has a balance of cold, salty Bay water and warmer, fresher Sacramento River water
- Highest impacts from levee breaches on Grizzly Montezuma and near Joice NW marsh
- Breaches lead to tidal dampening and water quality redistributions (Salinity, sediment, water temperature)
- Disruptions in managed wetland and duck ponds
- Changes in flow patterns effect other parameters

Questions?

Carlos Ballas

Contact Information

• Scott Burdick

Water Resources Specialist Resource Management Associates 1756 Picasso Ave, Suite G Davis, CA 95618 (530) 564-7043 <u>scott@rmanet.com</u> <u>www.rmanet.com</u>

Acknowledgements

John Takekawa (SRCD) Richelle Tanner (Chapman University) Steve Andrews (RMA) Stacie Grinbergs (RMA) Richard Rachiele (RMA) John DeGeorge (RMA)