
MERCED RIVER

WATERSHED STUDY

IN-DEPTH DISCUSSION OF ECOSYSTEM EFFECTS

KARANDEV SINGH (KARANDEV. SINGH@WATER.CA.GOV) | CWEMF ANNUAL MEETING | 4/5/2022

Sustainable Conservation

WATER & POWER

Session 16. Merced River Flood-MAR Study

- 1. Overview
- 2. Water Available for Recharge and Water Supply and Flood Risk Benefits
- 3. In-depth Discussion of Ecosystem Effects
- 4. Multi-sector Performance Using Risk-based Analytics

Results → **Metrics** → **Sector Performance**

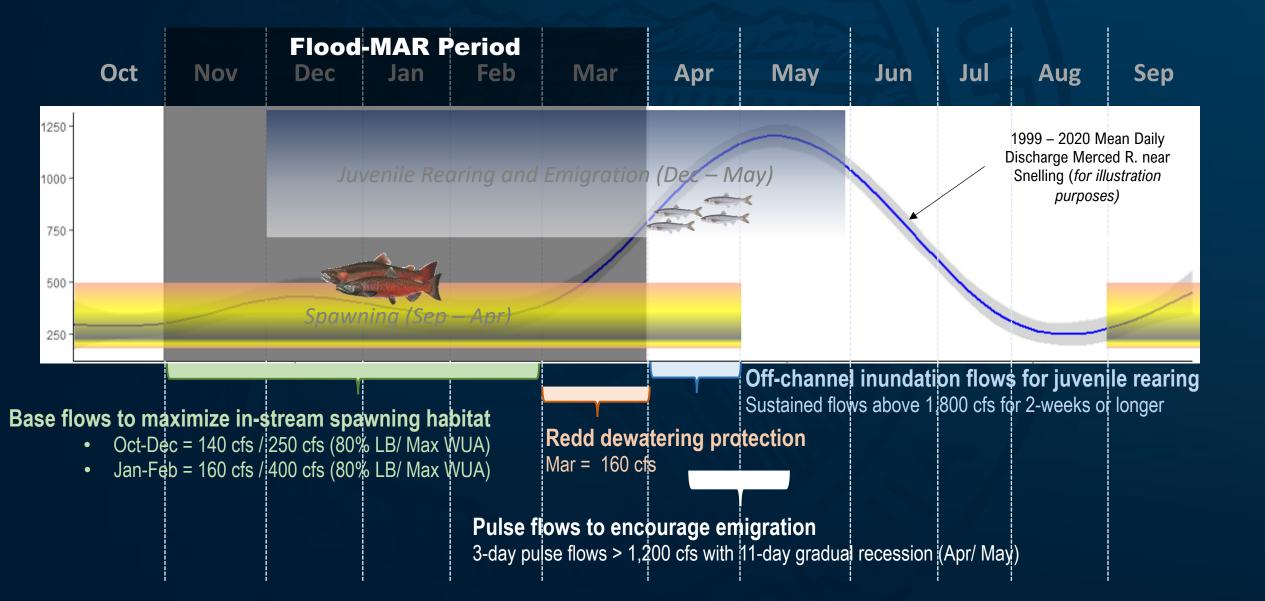
		Upper Watershed Runoff			
	Watershed Conditions	Applied Demand			
		Water Available For Recharge (WAFR)			
		GW Pumping			
	Water Supply/ Groundwater (GW)	Δ GW Storage			
		Δ GW Levels in Disadvantaged Communities			
	Water Supply/	Lake McClure Storage			
	Surface Water (SW)	SW Deliveries			
	Flood Risk	Merced River Flood Conditions			
- 4		GDE Habitat			
	Ecosystem	GDE Habitat Merced River Salmonid Habitat			

Ecosystem Sector

• Benefits of Flood-MAR to flood risk and water supply are clear.

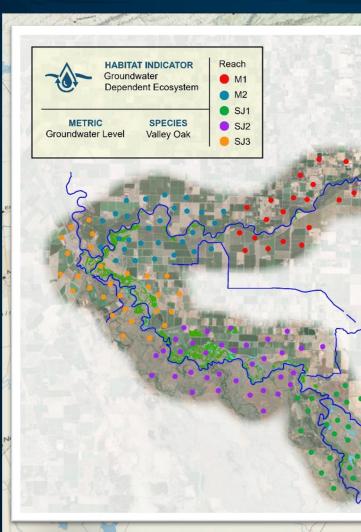
- Benefits are expected for nonaquatic species (trees, shorebirds) that rely on groundwater and surface water affected by recharge actions.
- Aquatic species reliant on in-stream flow may see benefits and impacts

Ecosystem Objectives


 Evaluate the potential effects of Flood-MAR on Groundwater Dependent Ecosystem species (GDEs), salmonids, shorebirds

 Provide recommendations for how reservoir re-operations and infrastructure enhancements can minimize impacts and provide potential benefits for salmonids

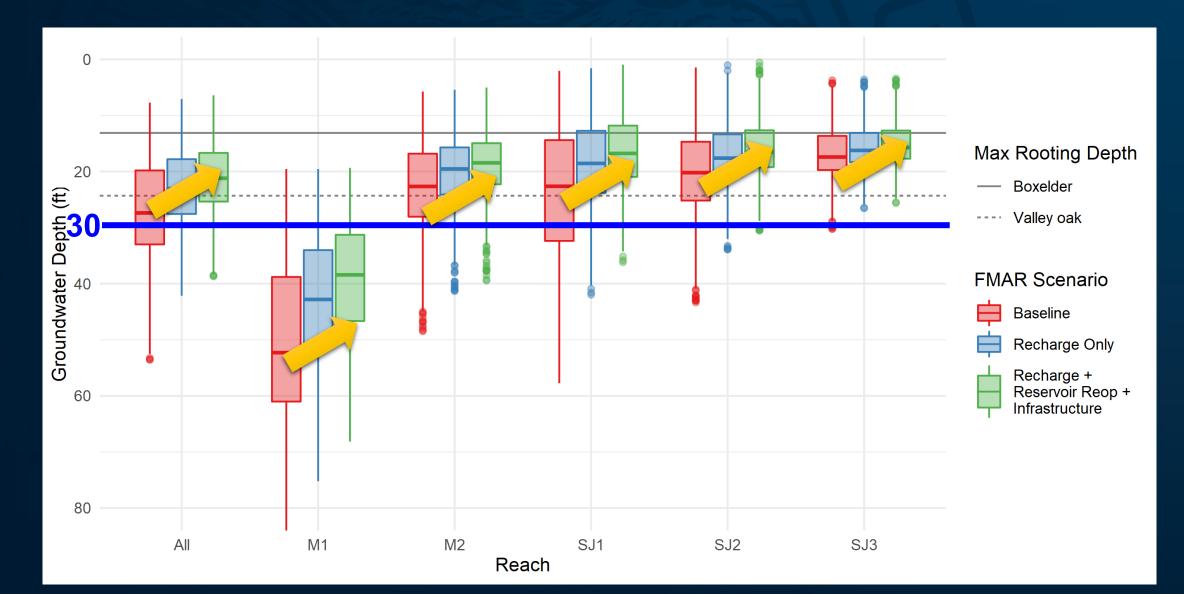
Scenario Overview


- 1. Baseline
- 2. Level 1 Intermediate "Recharge-only"
 - High flows using existing infrastructure
 - Passively managed ecosystem
- 3. Level 3 FIRO-MAR
 - High flows + Reservoir Reoperation + Infrastructure Improvement
 - Set higher winter base releases to maximize spawning habitat area
 - Repurposed winter and spring runoff for eco releases made in April-May (spring pulse flows, off-channel inundation flows etc.)
 - Improved off-channel habitat

Level 2/3 Eco-operations

Groundwater Dependent Ecosystems (GDEs)

- GDEs are plant and animal communities that require groundwater to meet some or all water needs
- Provide water purification, flood mitigation, base flow in rivers, and recreation opportunities
- We evaluated the effects of Flood-MAR actions relative to rooting depths of key tree species


GDE Rooting Depth

Dominant Species Common Name	Rooting Depth (feet)
Valley oak	24.31
Boxelder	13.12
Goodding's black willow	6.89
Fremont cottonwood	6.89
Hinds' walnut	5.91
Narrow-leaved cattail	0.89
Narrow-leaved willow	NA
Common tule	NA
Mugwort	NA
Blackberry	NA
Arroyo willow	NA

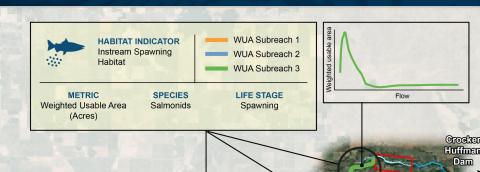
Max rooting depth of 30 feet (Merced Sub-basin GSP, 2019)

Preliminary Results – Subject to Change

Groundwater Dependent Ecosystems

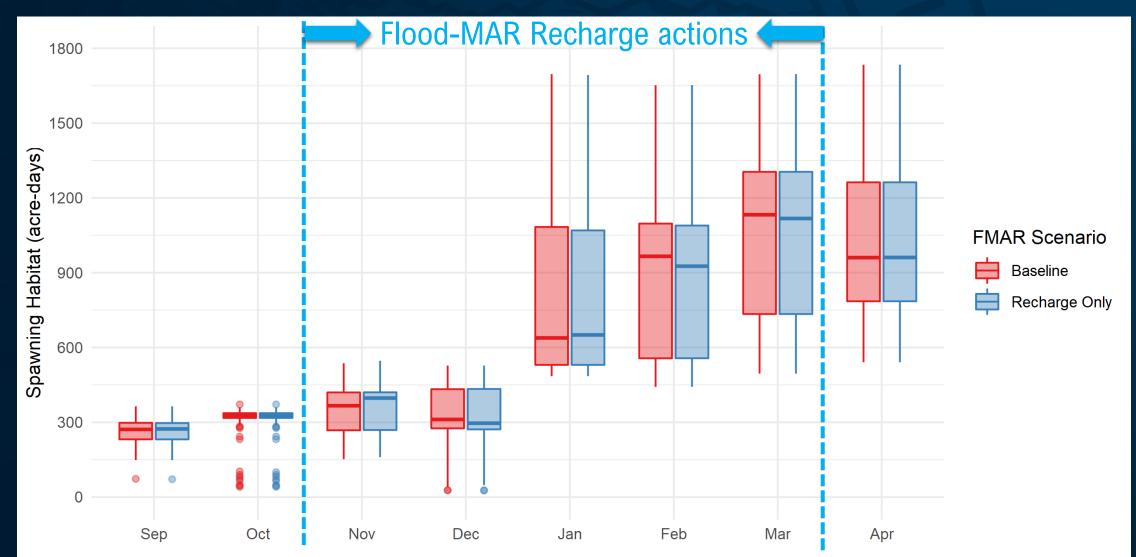
System Performance Performance evaluated with respect Performance evaluated with respect to to Baseline Current Conditions Baseline DT3DP1.1 Scenario Performance Indicator: Decline | No significant change | Improvement **VULNERABILITY ADAPTATION Preliminary Results – Subject to Change** PERFORMANCE CURRENT **DT3DP1.1 DT3DP1.1** BASELINE L1 INTERM. L3 FIRO-MAR 1,277 Upper Watershed Oct – Sep TAF/ year 1,123 Watershed 1.277 1.277 Runoff Conditions 688 TAF/ season 434 Nov – Mar 688 688 689 589 Apr – Oct TAF/ season 589 589 854 **Applied Demand** TAF/ year Agricultural Demand (Oct – Sep) 800 854 854 90 119 Water Available Available (Nov – Mar) TAF/ season -----For Recharge 79 111 Applied (Nov – Mar) TAF/ season ----499 Water Supply/ GW Pumping Oct – Sep TAF/ year 499 466 501 Groundwater -35 -32 Δ GW Storage TAF/ year -60 Change in basinwide GW storage -50 (GW) -0.2 ∆ GW Levels -0.8 -0.1 Aguifer east of Corcoran Clay layer Feet/ year -0.6 Lake McClure End of October Storage 474 Avg. TAF 518 472 Water Supply/ 474 Storage **Surface Water** 8 # Years allocation $\leq 80\%$ Years 7 7 7 (SW) SW Deliveries 372 Oct – Sep TAF/ year 355 372 369 42,412 15,660 Merced River 40,552 Flood Risk 100-year max simulated flow 6.004 cfs Flood Conditions 9 1 # Years with flows > 7300 cfs Years 0 9 **GDE** Habitat 70 79 83 Ecosystem % Months with GW Levels \leq 30 feet Percent 77

Salmonid Habitat


- Require freshwater for spawning and rearing
- Dependent on adequate depths, velocities, substrates, and cool temps
- Life stages evaluated: spawning, rearing, juvenile emigration
 - In-stream spawning habitat
 - Potential* seasonally inundated off-channel juvenile rearing habitat

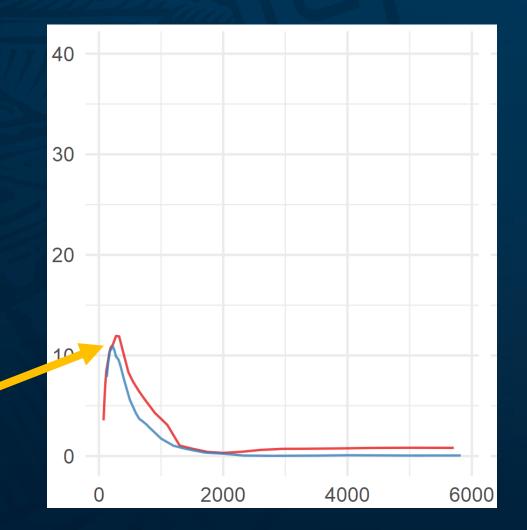
*Without improvement, off-channel habitat very limited in Merced River currently.

Instream Salmonid Spawning Habitat

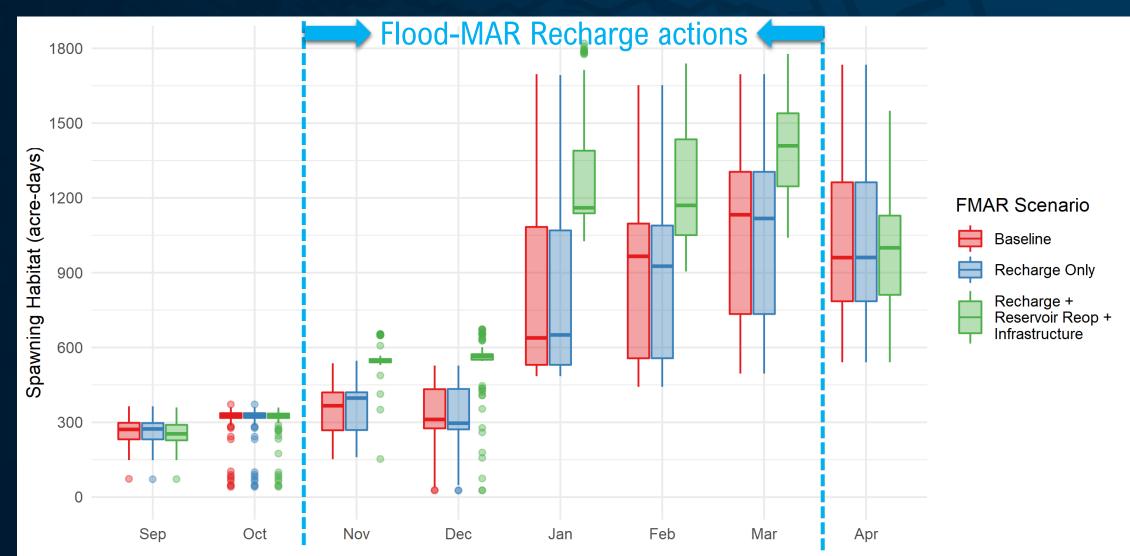

Tracking the spawning habitat at Subreach 1 and 3 using the weighted usable area and flow relationship evaluated using the Physical Habitat Simulation system (PHABSIM).

These reaches span the region where Salmonids are most likely to spawn within the Lower Merced River.

Preliminary Results – Subject to Change

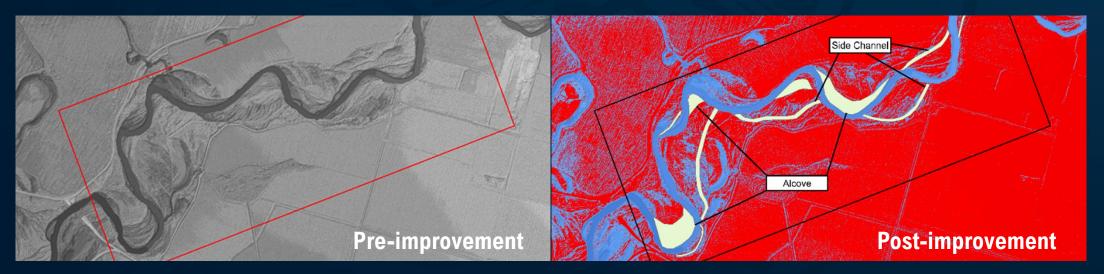

Instream Salmonid Spawning Habitat

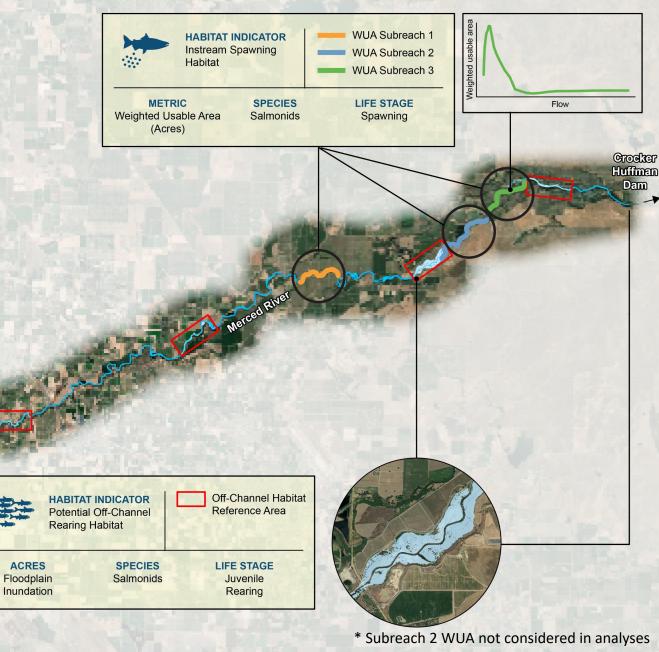
Instream Spawning Habitat


Recommended Level 3 FIRO-MAR reservoir reoperation:

- Re-operate reservoir to maximize spawning habitat of salmonids by maintaining flows at the following levels
 - Oct-Dec = 140 400 cfs
 - Jan-Feb = 160 800 cfs
 - Mar = 160 cfs

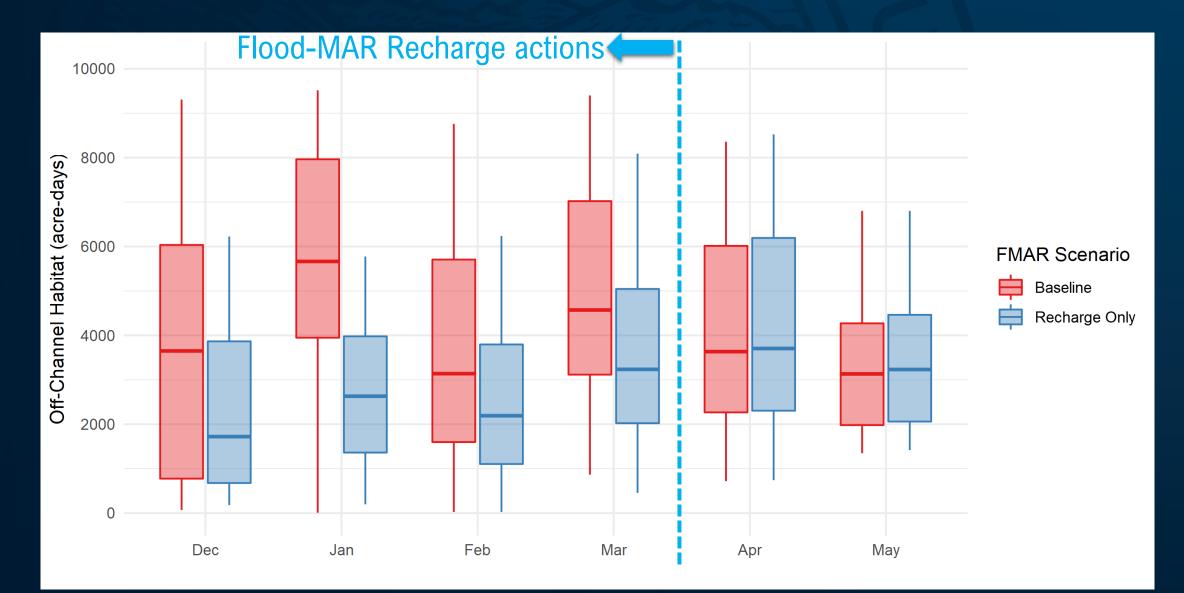
Preliminary Results – Subject to Change


Instream Salmonid Spawning Habitat

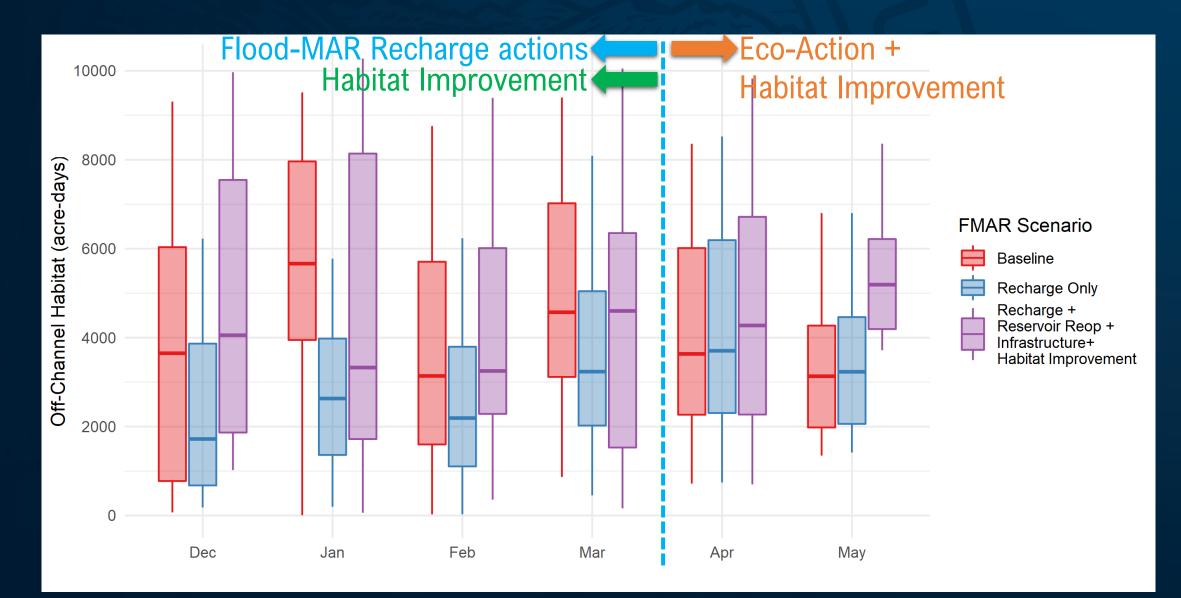

System Performance Performance evaluated with respect Performance evaluated with respect to to Baseline Current Conditions Baseline DT3DP1.1 Scenario Performance Indicator: Decline | No significant change | Improvement **VULNERABILITY ADAPTATION Preliminary Results – Subject to Change** PERFORMANCE CURRENT **DT3DP1.1 DT3DP1.1** BASELINE L1 INTERM. L3 FIRO-MAR 1,277 Upper Watershed Oct – Sep TAF/ year 1,123 1.277 Watershed 1.277 Runoff Conditions 688 TAF/ season 434 Nov – Mar 688 688 689 589 Apr – Oct TAF/ season 589 589 **Applied Demand** 854 TAF/ year Agricultural Demand (Oct – Sep) 800 854 854 90 119 Water Available Available (Nov – Mar) TAF/ season -----For Recharge 79 111 Applied (Nov – Mar) TAF/ season -----499 Water Supply/ GW Pumping Oct – Sep TAF/ year 499 466 501 Groundwater -35 -32 Δ GW Storage TAF/ year -60 Change in basinwide GW storage -50 (GW) -0.2 ∆ GW Levels -0.8 -0.1 Aguifer east of Corcoran Clay layer Feet/ year -0.6 Lake McClure End of October Storage 474 Avg. TAF 518 472 Water Supply/ 474 Storage **Surface Water** 8 8 # Years allocation $\leq 80\%$ Years 7 7 (SW) SW Deliveries 372 Oct – Sep TAF/ year 355 372 369 42,412 15.660 Merced River 40,552 Flood Risk 100-year max simulated flow 6.004 cfs Flood Conditions 9 1 Years # Years with flows > 7300 cfs 0 9 **GDE** Habitat 70 79 83 % Months with GW Levels \leq 30 feet 77 Ecosystem Percent Merced River 509 657 In-stream spawning habitat (Sep – Apr) 1000 Acre-Days 530 509 Salmonid Habitat

Potential Off-channel Habitat

- Very limited in Merced River currently
- Recommended reservoir reoperation plus habitat improvement
 - Support a single off-channel habitat inundation event April
 - By maintaining sustained flow of 1,800 to create habitat with at least 1 foot of depth
 - For a minimum of 2-week period



 Tracking the off-channel habitat with a minimum depth of 1ft available at 5 reference reaches along the Lower Merced River.


Preliminary Results – Subject to Change

Potential Off-channel Habitat

Preliminary Results – Subject to Change

Potential Off-channel Habitat

System Performance Performance evaluated with respect Performance evaluated with respect to to Baseline Current Conditions Baseline DT3DP1.1 Scenario Performance Indicator: Decline | No significant change | Improvement **VULNERABILITY ADAPTATION** Preliminary Results – Subject to Change PERFORMANCE CURRENT **DT3DP1.1 DT3DP1.1** BASELINE L1 INTERM. L3 FIRO-MAR 1,277 Upper Watershed Oct – Sep TAF/ year 1,123 1.277 Watershed 1.277 Runoff Conditions 688 TAF/ season 434 Nov – Mar 688 688 689 589 Apr – Oct TAF/ season 589 589 **Applied Demand** 854 TAF/ year 800 Agricultural Demand (Oct – Sep) 854 854 90 119 Water Available Available (Nov – Mar) TAF/ season -----For Recharge 79 111 Applied (Nov – Mar) TAF/ season -----499 GW Pumping Water Supply/ Oct – Sep TAF/ year 499 466 501 Groundwater -60 -35 -32 Δ GW Storage TAF/ year Change in basinwide GW storage -50 (GW) -0.8 -0.2 ∆ GW Levels -0.1 Aguifer east of Corcoran Clay layer Feet/ year -0.6 474 Lake McClure End of October Storage Avg. TAF 518 Water Supply/ 474 472 Storage **Surface Water** 8 # Years allocation $\leq 80\%$ Years 7 7 7 (SW) SW Deliveries 372 Oct – Sep TAF/ year 355 372 369 15,660 42,412 Merced River 40,552 Flood Risk 100-year max simulated flow 6.004 cfs Flood Conditions 9 # Years with flows > 7300 cfs Years 0 70 **GDE** Habitat 79 83 % Months with GW Levels \leq 30 feet 77 Ecosystem Percent 509 657 Merced River In-stream spawning habitat² 1000 Acre-Days 530 509 Salmonid Habitat Without improvement, very limited off-channel habitat in Merced River. ¹ Dec – May Potential off-channel seaschally mundated hadra includes habitat improvement in addition to providing inundation flows. ² Sep – Apr

Shorebirds

 Recommendations from The Nature Conservancy

- 2" 4" inundation for a minimum of 2 weeks
- Two distinct migratory periods:
 - March 15 April 30
 - July 15 October 15
- Habitat created within 6 miles from a managed wetland preferred

Shorebirds

521 acres of habitat created*

- at 2" inundated depth
- during March
 - 2-days of ramp up period
 - 28-days of constant inundation depth
 - 1-day of ramp-down period

*Level 2 and 3 FIRO-MAR & Hybrid-MAR scenarios only

d	Land- Use	SAGBI Soil Type	Within 6 miles of Merced NWR (acres)	Outside 6 miles of Merced NWR (acres)	TOTAL (acres)	
5	Idle	Poor	121	360	481	
	Idle	Very Poor	0	40	40	
	TOTAL	(acres)	121	400	521	

System Performance

Performance evaluated with respect to Baseline Current Conditions Performance evaluated with respect to <u>Baseline DT3DP1.1 Scenario</u>

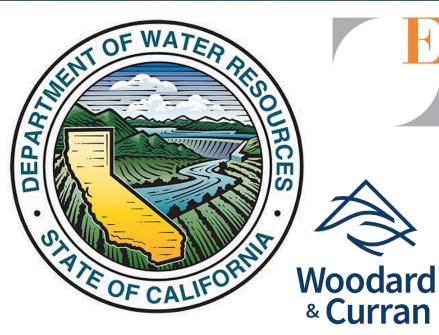
	esults – Subjec	t to Change	VULNERABILITY		ADAPTATION PERFORMANCE			
* <u>Without im</u>	<u>provement</u> , verj	y limited off-cha	CURRENT	DT3DP1.1	DT3	DP1.1		
					BASI	ELINE	L1 INTERM.	L3 FIRO-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277
<u> </u>	Conditions	Runoff	Nov – Mar	TAF/ season	434	688	688	688
			Apr – Oct	TAF/ season	689	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854
		Water Available	Available (Nov – Mar)	TAF/ season			90	119
		For Recharge	Applied (Nov – Mar)	TAF/ season			79	111
* 🇛	Water Supply/ Groundwater (GW)	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501
		Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-35	-32
		Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-0.8	-0.2	-0.1
ÍII.	Water Supply/	Lake McClure Storage	End of October Storage	Avg. TAF	518	474	474	472
	Surface Water		# Years allocation $\leq 80\%$	Years	7	7	7	8
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	372	372	369
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	42,412	40,552	15,660
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	9	9	1
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	70	79	83
_% >		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	509	509	657
		Salmonid Habitat 1 Dec – May	Potential [*] off-channel seasonally inundated habitat ¹	1000 Acre-Days	212	633	441	427
		² Sep – Apr		Years	30	45	45	46
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				963

System Performance

Performance Indicator: Decline | No significant change | Improvement

Performance evaluated with respect to Baseline Current Conditions Performance evaluated with respect to <u>Baseline DT3DP1.1 Scenario</u>

Preliminary Results – Subject to Change					VULNER	ABILITY	ADAPTATION PERFORMANCE		
					CURRENT	DT3DP1.1		DT3DP1.1	
* <u>Without improvement</u> , very limited off-channel habitat in Merced River.						LINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed Conditions	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277	1,277
Conditions	Conditions	Runoff	Nov – Mar	TAF/ season	434	688	688	688	688
			Apr – Oct	TAF/ season	689	589	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854	854
		Water Available	Available (Nov – Mar)	TAF/ season			90	119	151
		For Recharge	Applied (Nov – Mar)	TAF/ season			79	111	145
*	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501	506
	Groundwater	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-35	-32	-15
	(GW)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-0.8	-0.2	-0.1	0.3
	Water Supply/	Lake McClure Storage	End of October Storage	Avg. TAF	518	474	474	472	435
	Surface Water		# Years allocation $\leq 80\%$	Years	7	7	7	8	9
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	372	372	369	367
	Flood Risk	Merced River Flood Conditions	100-year max simulated flow	cfs	6,004	42,412	40,552	15,660	8,774
			# Years with flows > 7300 cfs	Years	0	9	9	1	2
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	70	79	83	79
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	509	509	657	628
		Salmonid Habitat 1 Dec – May		1000 Acre-Days	212	633	441	427	354
		² Sep – Apr	Potential [*] off-channel seasonally inundated habitat ¹	Years	30	45	45	46	37
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				963	- 26


In summary...

- 1. Flood-MAR actions are expected to benefit GDEs and shorebirds
- 2. Aquifer recharge alone, without careful consideration of aquatic species, may have net negative impacts
- 3. Reservoir reops can minimize impacts and create benefits by:
 - Fine-tuning releases to maximize habitat for key life stages (e.g., spawning)
 - Providing pulse flows in key months to encourage juvenile emigration
- 4. Off-channel habitat improvement can provide beneficial rearing habitat for salmonids

QUESTIONS?

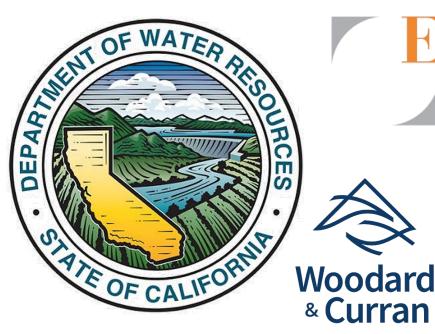
KARANDEV SINGH (KARANDEV. SINGH@WATER.CA.GOV) | CWEMF ANNUAL MEETING | 4/5/2022

Sustainable Conservation

MERCED

DISTRICT

IRRIGATION



MERCED RIVER

WATERSHED STUDY

MULTI-SECTOR PERFORMANCE USING RISK-BASED ANALYTICS

KARANDEV SINGH (KARANDEV. SINGH@WATER.CA.GOV) | CWEMF ANNUAL MEETING | 4/5/2022

Sustainable Conservation

WATER & POWER

Session 16. Merced River Flood-MAR Study

- 1. Overview
- 2. Water Available for Recharge and Water Supply and Flood Risk Benefits
- 3. In-depth Discussion of Ecosystem Effects

4. Multi-sector Performance Using Riskbased Analytics

300 Runs

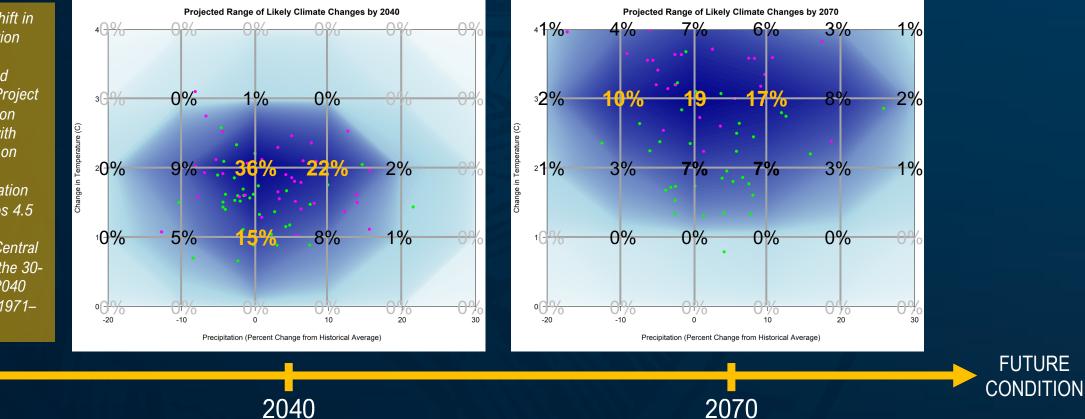
30 Climate Scenarios x [Baseline + 9 Project Alternatives]

Why the 30 climate scenarios?

9 Models

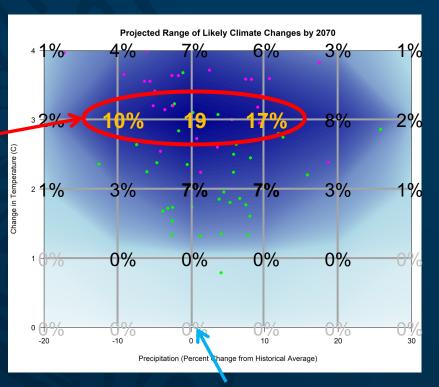
simulating integrated "headwater-to-groundwater" physical processes and operations at a sub-daily to monthly timestep over a 100-year continuous period representing hydrologic conditions between WY 1900 and WY 1999.

CHALLENGE: How to meaningfully present and understand climate vulnerability and adaptation potential?


Scenario-based vs. risk-based analytics

Decision scaling: what and why?

The dots represent the shift in average annual precipitation and temperature for the ensemble of Fifth Coupled Model Intercomparison Project (CMIP5) general circulation models (GCMs) driven with Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 in the region contributing flow to the Central Valley Water System for the 30vear period centered at 2040 and 2070 relative to the 1971-2000 period.


CURRENT

CONDITION

Instead of selecting handful "representative" climate scenarios, evaluated across a full spectrum of probable climate futures.

Most probable 2070 climate futures (+3°C and ±10%)

SYSTEM PERFORMANCE *Current Climate* (0°C and 0%)

Scenario Comparison

33

Results – Future Conditions (+3°C, +10%) Performance evaluated with respect to Baseline Current Conditions

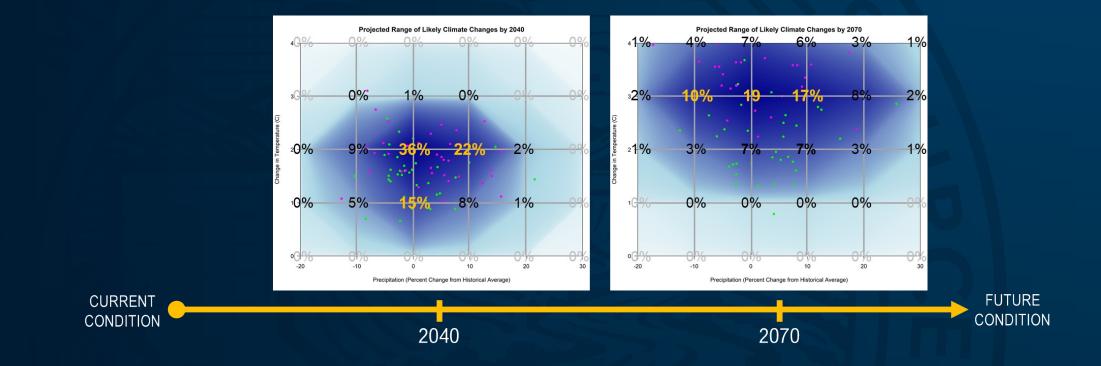
Performance evaluated with respect to Baseline DT3DP1.1 Scenario

			No significant change Improve	ment	VULNER	RABILITY	ADAPTA	TION PERFOR	MANCE
Preliminary Results – Subject to Change * <u>Without improvement</u> , very limited off-channel habitat in Merced River.						DT3DP1.1		DT3DP1.1	
" <u>vvitnout im</u> j	<u>provement</u> , ver <u></u>	y limitea off-cha	annei nabitat in Merced River.		BASE	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277	1,277
	Conditions	Runoff	Nov – Mar	TAF/ season	434	688	688	688	688
- <u>`</u>			Apr – Oct	TAF/ season	689	589	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854	854
		Water Available	Available (Nov – Mar)	TAF/ season			90	119	151
		For Recharge	Applied (Nov – Mar)	TAF/ season			79	111	145
* 🔺	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501	506
	Groundwater (GW)	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-35	-32	-15
	(GWV)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-0.8	-0.2	-0.1	0.3
ATTT	Water Supply/	Lake McClure Storage	End of October Storage	Avg. TAF	518	474	474	472	435
	Surface Water		# Years allocation \leq 80%	Years	7	7	7	8	9
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	372	372	369	367
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	42,412	40,552	15,660	8,774
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	9	9	1	2
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	70	79	83	79
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	509	509	657	628
		Salmonid Habitat ¹ Dec – May	Detential [*] off channel accountly inundated behitst 1	1000 Acre-Days	212	633	441	427	354
		² Sep – Apr	Potential [*] off-channel seasonally inundated habitat ¹	Years	30	45	45	46	37
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days	0	0	0	963	⁰ 34

Results – Future Conditions (+3°C, 0%)

Performance evaluated with respect to <u>Baseline Current Conditions</u>

Performance evaluated with respect to <u>Baseline DT3DP1.1 Scenario</u>

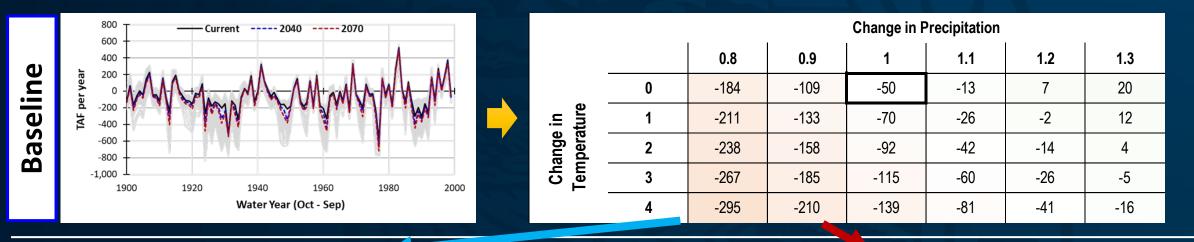

			No significant change Improver	nent	VULNER	ABILITY	ADAPTA	ATION PERFOR	RMANCE	
Preliminary Results – Subject to Change * <u>Without improvement</u> , very limited off-channel habitat in Merced River.						CURRENT DT3DP1.0		DT3DP1.0		
* <u>Without im</u> j	<u>provement</u> , verj	y limited off-cha	annel habitat in Merced River.		BASI	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR	
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,074	1,074	1,074	1,074	
	Conditions	Runoff	Nov – Mar	TAF/ season	434	569	569	569	569	
<u>- 🖌 </u>			Apr – Oct	TAF/ season	689	505	505	505	505	
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	864	864	864	864	
		Water Available	Available (Nov – Mar)	TAF/ season			60	79	103	
		For Recharge	Applied (Nov – Mar)	TAF/ season			54	73	100	
* 🔺	Water Supply/ Groundwater (GW)	GW Pumping	Oct – Sep	TAF/ year	466	520	520	524	528	
		Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-115	-93	-91	-77	
		Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-1.6	-1.1	-1.0	-0.8	
ATT	Water Supply/	Lake McClure Storage	End of October Storage	Avg. TAF	518	417	417	414	374	
	Surface Water		# Years allocation \leq 80%	Years	7	14	14	15	18	
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	359	359	354	350	
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	6,077	6,077	6,047	6,553	
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	0	0	0	0	
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	34	39	42	40	
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	481	481	645	610	
		Salmonid Habitat ¹ Dec – May	.	1000 Acre-Days	212	374	245	230	182	
		² Sep – Apr	Potential [*] off-channel seasonally inundated habitat ¹	Years	30	33	34	34	28	
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				773	35	

Results – Future Conditions (+3°C, -10%)

with respect to <u>Baseline Current Conditions</u>

Performance evaluated with respect to Baseline DT3DP1.1 Scenario

Performance Indicator: Decline No significant change Improvement Preliminary Results – Subject to Change * <u>Without improvement</u> , very limited off-channel habitat in Merced River.						RABILITY	ADAPTATION PERFORMANCE		
						DT3DP0.9		DT3DP0.9	
^ <u>Without im</u> j	<u>provement</u> , ver <u></u>	y limited off-cha	annel habitat in Merced River.		BASI	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	879	879	879	879
	Conditions	Runoff	Nov – Mar	TAF/ season	434	456	456	456	456
<u></u>			Apr – Oct	TAF/ season	689	423	423	423	423
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	875	875	875	875
		Water Available	Available (Nov – Mar)	TAF/ season			33	49	65
		For Recharge	Applied (Nov – Mar)	TAF/ season			30	45	63
* 🔺	Water Supply/ Groundwater (GW)	GW Pumping	Oct – Sep	TAF/ year	466	547	548	553	558
		Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-185	-172	-170	-161
		Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-2.5	-2.2	-2.2	-2.0
ATT	Water Supply/	Lake McClure Storage	End of October Storage	Avg. TAF	518	359	358	354	316
	Surface Water		# Years allocation \leq 80%	Years	7	22	22	25	28
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	338	338	332	328
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	6,004	6,004	6,021	6,021
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	0	0	0	0
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	20	21	21	21
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	451	452	629	590
		Salmonid Habitat ¹ Dec – May		1000 Acre-Days	212	177	118	100	87
		² Sep – Apr	Potential [*] off-channel seasonally inundated habitat ¹	Years	30	24	24	21	17
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				598	36


SYSTEM PERFORMANCE

Planning Horizon

AVERAGE = a assumes that all scen (probabi[/] al weight which have same likelihood currence

WEIGHTED AVERAGE = assign weight based on the likelihood of occurrence

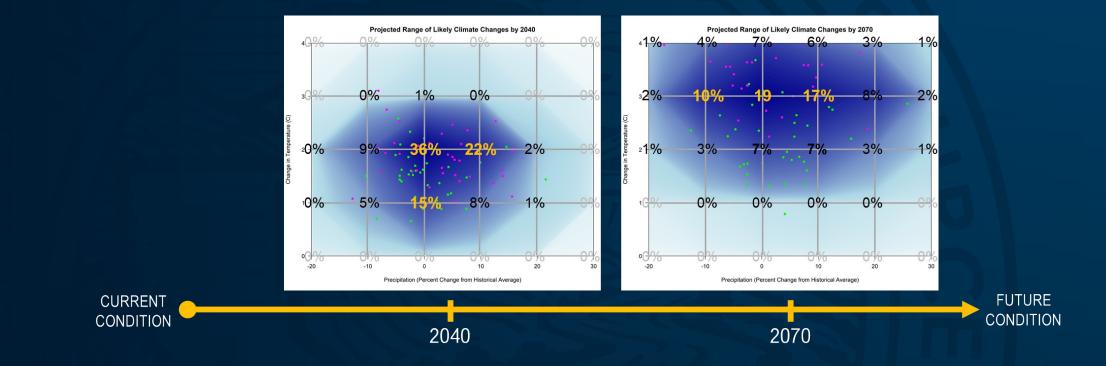
Planning Horizon/ Expected Value

			Ch	ange in F	Precipitat	ion				Change in Precipitation							
zon		0.8	0.9	1	1.1	1.2	1.3	izon			0.8	0.9	1	1.1	1.2	1.3	
Horizon 0 re	0	0%	0%	0%	0%	0%	0%	lori) 0	્ય	0	0%	0%	0%	0%	0%	0%	
g h 04 bin atu	1	0%	5%	15%	8%	1%	0%		e in atur	1	0%	0%	0%	0%	0%	0%	
ng	2	0%	9%	36%	22%	2%	0%	ning 20		2	1%	3%	7%	7%	3%	1%	
Plan Cha 「emp	3	0%	0%	1%	0%	0%	0%	Plann	Cha emp	3	2%	10%	19%	17%	8%	2%	
	4	0%	0%	0%	0%	0%	0%		Ξ	4	1%	4%	7%	6%	3%	1%	

	LT	
Current	-50	
2040	-79	
2070	-101	

Results – 2040 Planning Horizon

Performance evaluated with respect to <u>Baseline Current Conditions</u> Performance evaluated with respect to <u>Baseline DT3DP1.1 Scenario</u>


Performa	nce Indicat	tor: Decline	No significant change Improve	ment	VULNER			TION PERFOR	MANCE	
Preliminary R	Results – Subjec	t to Change		1. The start	CURRENT	PH 2040		PH 2040		
* <u>Without im</u>	<u>provement</u> , ver	y limited off-cha	annel habitat in Merced River.		BASELINE		L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR	
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,138	1,138	1,138	1,138	
	Conditions	Runoff	Nov – Mar	TAF/ season	434	528	528	528	528	
_` `			Apr – Oct	TAF/ season	689	610	610	610	610	
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	835	835	835	835	
		Water Available	Available (Nov – Mar)	TAF/ season			59	81	108	
		For Recharge	Applied (Nov – Mar)	TAF/ season			54	75	105	
* 🔺	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	494	494	497	501	
	Groundwater	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-79	-62	-59	-46	
	(GW)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-1.0	-0.6	-0.6	-0.3	
	Water Supply/	Lake McClure	End of October Storage	Avg. TAF	518	479	478	474	425	
	Surface Water	Storage	# Years allocation $\leq 80\%$	Years	7	10	10	11	13	
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	359	359	356	352	
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	15,677	14,919	9,084	8,384	
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	3	2	1	1	
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	57	63	66	63	
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	509	509	657	625	
		Salmonid Habitat ¹ Dec – May	Potential [*] off-channel seasonally inundated habitat ¹	1000 Acre-Days	212	367	249	264	198	
		² Sep – Apr		Years	30	36	35	39	31	
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				865	- 39	

Results – 2070 Planning Horizon

Darfarmanaa Indiaatar: Daalin

Performance evaluated with respect to <u>Baseline Current Conditions</u> Performance evaluated with respect to <u>Baseline DT3DP1.1 Scenario</u>

			No significant change Improver	ment	VULNER	ABILITY	ADAPTA	TION PERFOR	MANCE
	esults – Subjec			111 min	CURRENT	PH 2070		PH 2070	
* <u>Without im</u> j	<u>provement</u> , very	y limited off-cha	annel habitat in Merced River.		BASE	LINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,161	1,161	1,161	1,161
	Conditions	Runoff	Nov – Mar	TAF/ season	434	619	619	619	619
<u></u>			Apr – Oct	TAF/ season	689	542	542	542	542
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	860	860	860	860
		Water Available	Available (Nov – Mar)	TAF/ season			73	96	123
		For Recharge	Applied (Nov – Mar)	TAF/ season			65	89	118
* 🔺	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	515	516	519	523
	Groundwater	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-101	-80	-78	-66
	(GW)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-1.3	-0.9	-0.8	-0.5
	Water Supply/	Lake McClure	End of October Storage	Avg. TAF	518	436	436	433	395
	Surface Water	Storage	# Years allocation $\leq 80\%$	Years	7	12	12	14	16
	(SW)	SW Deliveries	Oct – Sep	TAF/ year	355	359	359	356	352
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	29,327	28,222	18,312	14,765
		Flood Conditions	# Years with flows > 7300 cfs	Years	0	5	5	2	2
	Ecosystem	GDE Habitat	% Months with GW Levels \leq 30 feet	Percent	77	50	55	58	56
		Merced River	In-stream spawning habitat ²	1000 Acre-Days	530	492	492	648	616
		Salmonid Habitat ¹ Dec – May	Detential [*] off channel accountly invested behitet 1	1000 Acre-Days	212	501	349	339	287
		² Sep – Apr	Potential [*] off-channel seasonally inundated habitat ¹	Years	30	38	38	39	32
		Shorebird Habitat	Inundated ag fields (521 acres x 28-days x # Events)	1000 Acre-Days				840	40

SYSTEM PERFORMANCE Risk-based Results

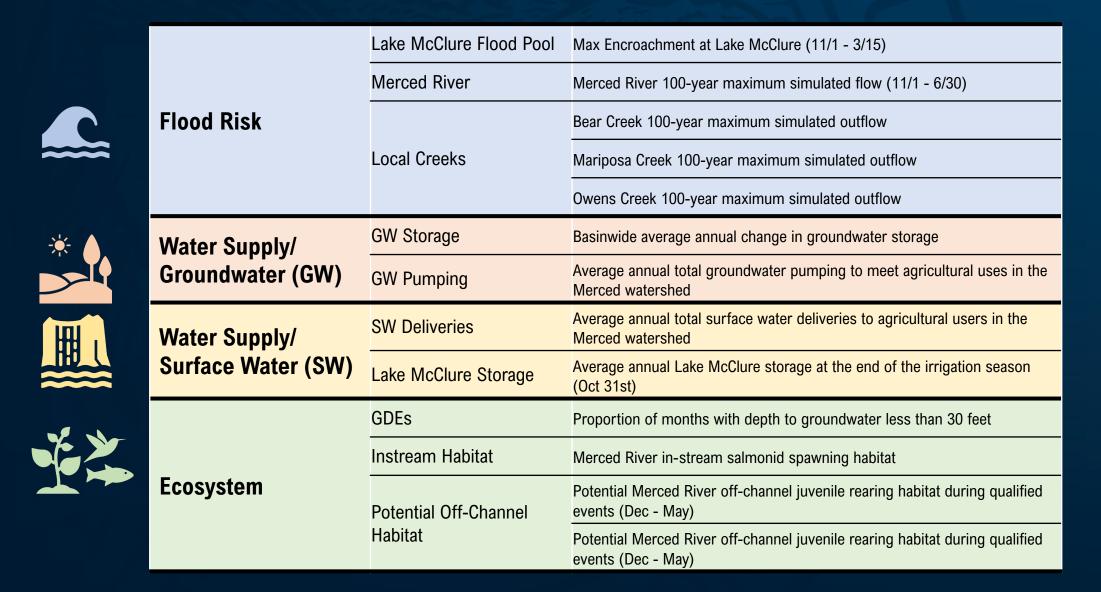
How to evaluate risk-based performance?

RISK – probability that future performance across all probable climate scenarios will deteriorate <u>by more than a specific threshold (e.g. 10%)</u> compared to the baseline current conditions.

Preliminary Results – Subject to Change

RISK — What is the probability that long-term change in GW storage rate is will exceed beyond 55 TAF (50 TAF + 10%) by 2040?

BASE	E Change in Precipitation							le	ess than		Change in Precipitation						
		0.8	0.9	1	1.1	1.2	1.3	ent		55 UIAII	0.8	0.9	1	1.1	1.2	1.3	
မ	0	-184	-109	-50	-13	7	20	tive	ç	0 ע	1	1	0	0	0	0	
e in atur	1	-211	-133	-70	-26	-2	12	relat re cu ditio		a la	1	1	1	0	0	0	
Change in Temperatur	2	-238	-158	-92	-42	-14	4	rend r aselin con	Change Compore	<u> </u>	1	1	1	0	0	0	
Cha	3	-267	-185	-115	-60	-26	-5	Trend baselii cor	Ch	3	1	1	1	1	0	0	
$\neg \vdash$	4	-295	-210	-139	-81	-41	-16		F	- 4	1	1	1	1	0	0	
									10								
							S										
		DICK							EV	-79.02		Ch	ange in F	Precipitat	ion		
Risk		RISK					orizon)	Risk	67%	0.8	0.9	1	1.1	1.2	1.3		
RISK		<i>@</i> ≥10%						ori	e	0	0%	0%	0%	0%	0%	0%	

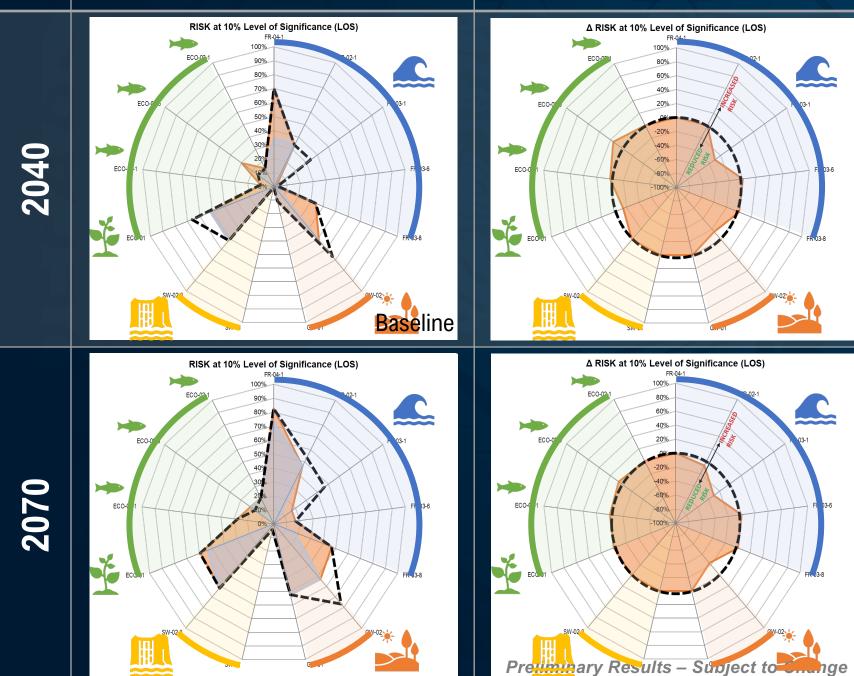

wher				ng H 2040 e in atur	1	0%	5%	15%	8%	1%	0%
WIICI			tions		2	0%	9%	36%	22%	2%	0%
	BASELINE	67%	tions	Planr Char 「emp	3	0%	0%	1%	0%	0%	0%
					4	0%	0%	0%	0%	0%	0%

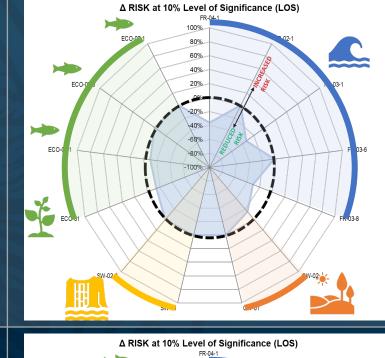
There is 67% probability that long-term change GW storage rate will exceed by more than 10% beyond the baseline current conditions by 2040.

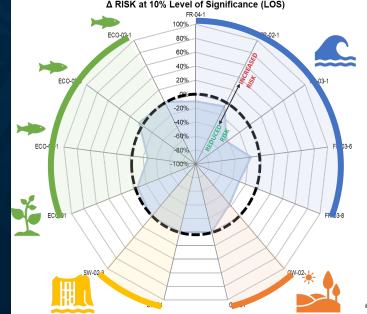
Preliminary Results - Subject to Change How is vulnerability reduced with Flood-MAR?

66	BASE Change in Precipitation									EV	-79		С	hange in F	Precipitati	on	
SELINE NOTHING"			0.8	0.9	1	1.1	1.2	1.3	rizon	Risk	67%	0.8	0.9	1	1.1	1.2	1.3
ASELINE	Le	0	-184	-109	-50	13	7	20		_	0	0%	0%	0%	0%	0%	0%
ШС	e ir atu	1	-211	-133	-70					F	RISK		5%	15%	8%	1%	0%
	Change in emperatur	2	-238	-158	-92						≥10%	,	9%	36%	22%	2%	0%
"DO	Change in Temperature	3	-267	-185	-115					<u>w</u>	210/0	U	0%	1%	0%	0%	0%
33		4	-295	-210	-139								0%	0%	0%	0%	0%
	ALT			0	hongo ir	BASEL							0	hongo in I	Droginitati	0.12	
LEVEL 1 ERMEDIATE	ALT		0.0		nange in	DAJEL				t	67%			hange in F			4.0
1 A		0	0.8 -178	0.9 -100	-36								0.9 0%	0%	1.1 0%	1.2 0%	1.3 0%
	ure	1	-170	-123	-30 -54	RECHA							0% 5%	15%	8%	1%	0%
EVEL	Change in Temperature	2	-204	-123	-73					Ļ	51%		9%	36%	22%	2%	0%
	han mpe	2	-258	-172	-93	(Level	1						0%	1%	0%	270	0%
L		3 4	-288	-194	-116	Interm	ediate			(-	16%)		0%	0%	0%	0%	0%
		**	-200	-134							-		0 70	0 70	0 70	0 70	0 70
	ALT			С	hange ir	RECHA	RGE +						Change in Precipitation				
CC			0.8	0.9	1	RES RI	-0P +			ļ	51%		0.9	1	1.1	1.2	1.3
IAF	U	0	-181	-98	-33			TUDE					0%	0%	0%	0%	0%
LEVEL 3 FIRO-MAR	Change in Temperature	1	-206	-121	-51	INFRA				(-	16%)		5%	15%	8%	1%	0%
ШШ	Change in emperatur	2	-235	-146	-71	(Level	3 FIRC)-MAR)			· · ·		9%	36%	22%	2%	0%
	Cha emp	3	-260	-170	-91	-32	0	19	lar	Ch: Tem	3	0%	0%	1%	0%	0%	0%
	Ĕ	4	-291	-193	-114	-50	-10	11		Ĕ	4	0%	0%	0%	0%	0%	0%

Results \rightarrow Metrics \rightarrow Sector Performance


RISK @ 10% LOS


Δ RISK – Level 1 Intermediate


03-6

EB-03-8

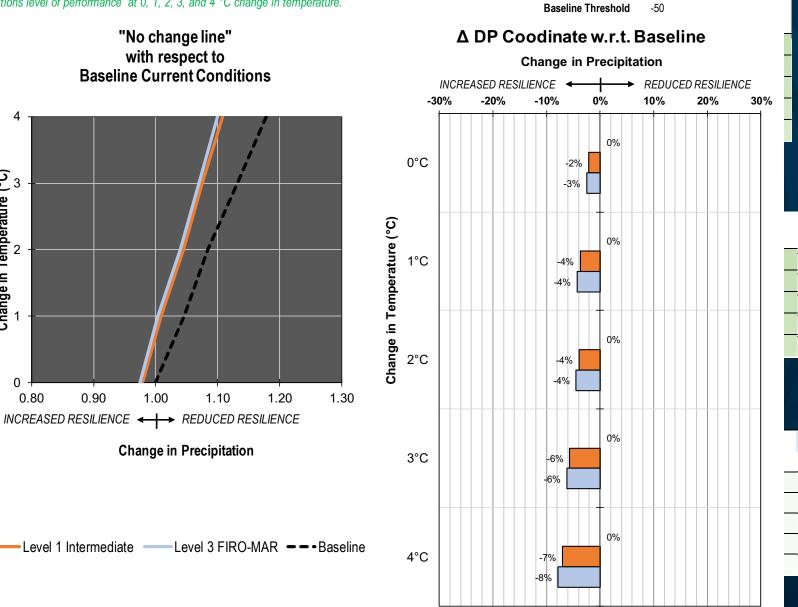
Δ RISK – Level 3 FIRO-MAR

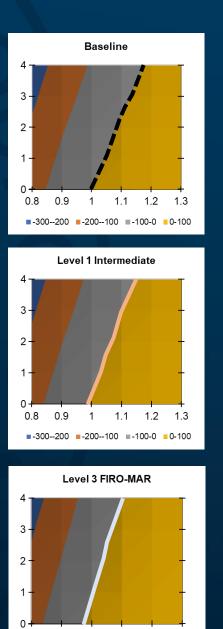
How to evaluate risk-based performance?

RISK – probability that future performance across all probable climate scenarios will deteriorate <u>by more than a specific level of significance (e.g.</u> <u>LOS = 10%</u>) compared to the baseline current conditions.

RESILIENCE – added buffer against change in precipitation to sustain the same level of future performance as the baseline current conditions for a given change in temperature threshold.

CLIMATIC RESILIENCE: Added buffer against change in precipitation to sustain the baseline current conditions level of performance at 0, 1, 2, 3, and 4 °C change in temperature.


4


Change in Temperature (°C)

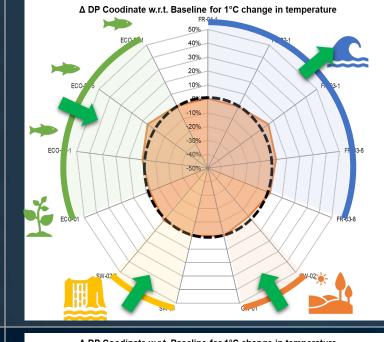
0

0.80

0.90

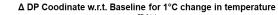
0.9

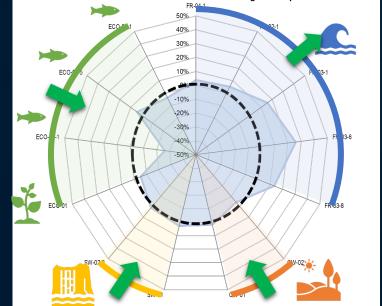
0.8

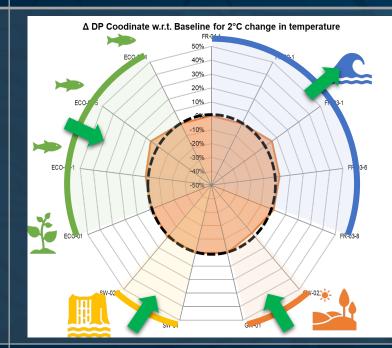

1 1.1 1.2 1.3

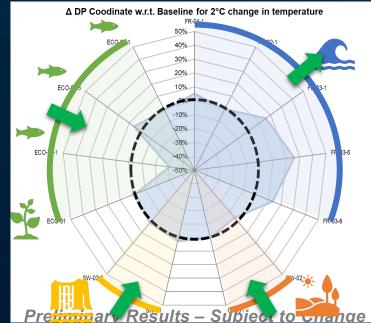
■-300--200 ■-200--100 ■-100-0 ■0-100

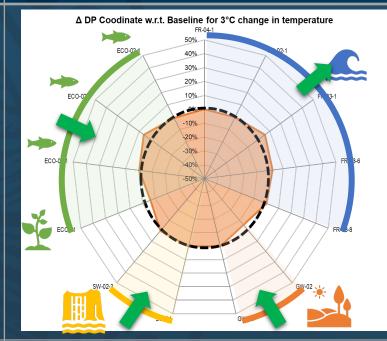
Resilience @ +1°C

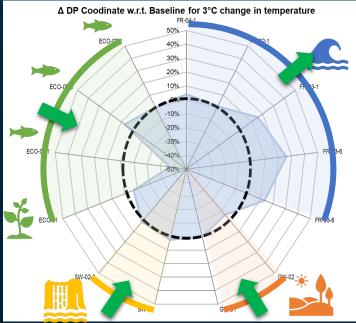

Resilience @ +2°C

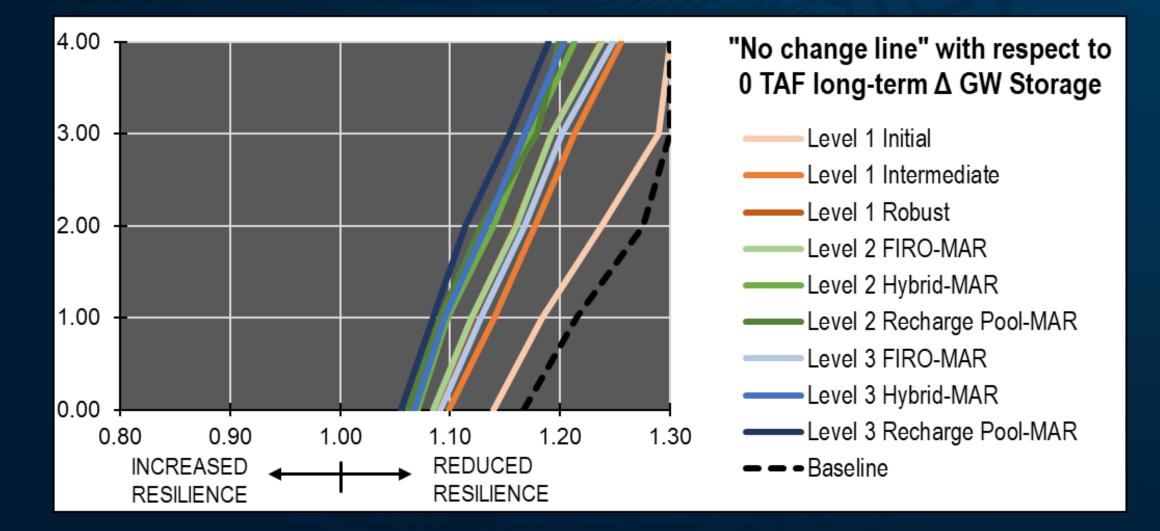

Resilience @ +3°C




L1 Intermediate


<u>-3 FIRO-MAR</u>





Can Flood-MAR actions alone help reach GW sustainability in the Merced River watershed?

What's next: San Joaquin River Basin Watershed Studies

New Hogan

Watershed Studies Integrate Data and Analytics

Rainfall-Runoff and Climate Change Data Local, State, Federal Governance and Jurisdictio

QUESTIONS?

KARANDEV SINGH (KARANDEV. SINGH@WATER.CA.GOV)

Land Use

Surface Water and Operations Conveyance and Delivery Infrastructur

Recharge Emphasis Areas and Groundwater

Ecosystem Opportunities