MERCED RIVER WATERSHED

STUDY

OVERVIEW

DAVID ARRATE (DAVID.ARRATE@WATER.CA.GOV) | CWEMF ANNUAL MEETING | 4/5/2022

theEARTH GENOME

Sustainable Conservation

WATER & POWER

MERCED

DISTRICT

IRRIGATION

Session 16. Merced River Flood-MAR Study

1. Overview

- 2. Water Available for Replenishment and Water Supply and Flood Risk Benefits
- 3. In-depth Discussion of Ecosystem Effects
- 4. Multi-sector Performance Using Risk-based Analytics

What is Flood-MAR

- Integrated strategy to manage water resources for sustainability & climate resiliency
- Using high flows from (or in anticipation of) rainfall or snowmelt for managed aquifer recharge
- On agricultural lands, working landscapes, and natural managed lands

Why Flood-MAR

- Mitigate the effects of climate change
 - Shift in the runoff timing
 - Increased flood risk
 - Additional consumptive use demand
- Achieve sustainable groundwater management
- Integrates multiple water sectors

Study Purpose & Goals

- Proof of concept study
- Integrated Watershed Modeling
- Assess vulnerability and adaptation
- Evaluate multi-sector effects
- Template for future studies and projects

Background

- Merced watershed
- One major reservoir
- 862 miles of conveyance
 - Main Canal
 - Northside Canal
- 132,000 acres of agricultural land
 - Merced Subbasin
 - Turlock Subbasin

Climate Change

- 100 years of hydrology
 - 1900 to 1999
- 30 climate scenarios
 - 0° to 4° Celsius increase in temperature
 - -20% to +30% change in precipitation
- Decision scaling approach

Average Runoff into Merced Basin (11/1 – 3/31) Baseline Average = 434 TAF

Model Integration Flowchart

Modeling Beyond Study Area

Watershed Scale Modeling

Watershed Scale Modeling

Watershed Scale Modeling

Results → Metrics → Sector Performance

Upper Watershed Runoff

	Watershed Conditions	Applied Demand
		Water Available For Recharge (WAFR)
*		GW Pumping
	Water Supply/ Groundwater (GW)	Δ GW Storage
		Δ GW Levels in Disadvantaged Communities
	Water Supply/	Lake McClure Storage
	Surface Water (SW)	SW Deliveries
	Flood Risk	Merced River Flood Conditions
		GDE Habitat
	Ecosystem	Merced River Salmonid Habitat
		Shorebird Habitat

FLOOD-MAR IMPLEMENTATION SCENARIOS

	Existing Infrastructure	Reservoir Reoperation	Management Emphasis	Infrastruc Improvem	ture ents
High Flows	\checkmark	×	×	×	Level 1 x 3
High Flows + Res. Reop.	\checkmark	\checkmark	\checkmark	×	Level 2 x 3
High Flows + Res. Reop. + Infrastructure	\checkmark	\checkmark	\checkmark	\checkmark	Level 3 x 3
	Flood-MAR uses	water that is physi	cally available in th	e system.	

Flood-MAR uses water that is physically available in the system. Physically available ≠ legally available. Opportunity for local, state, and federal partnerships.

Level 1 = Existing Infrastructure + High Flows

		Initial	Intermediate	Robust
٦	Fime Window	December to March	<u>November</u> to March	November to March
F 1	Protective Threshold	90 th Percentile Daily Flow	90 th Percentile <u>Monthly</u> Flow	<u>500 cfs</u>
[Diversion Amount	Up to minimum of 20% of total flow or available conveyance capacity	<u>Up to available</u> <u>conveyance capacity</u>	<u>Up to available</u> conveyance capacity
F	Recharge Location	Canal-Only	Canal & <u>On-Farm</u>	Canal & On-Farm
ase	ed on		PRESENTED TODAY "L1 Interm."	

Water Available For Recharge (WAFR)*

based on SWRCB's Streamlined Permitting Guidelines

*Lesser of instream flows available after meeting the downstream uses or flows above the protective flow threshold. Downstream uses include (1) environmental and applied water demands along the Merced River and local creeks, and (2) Sacramento-San Joaquin Delta regulatory requirements related to water quality, salinity, and flow.

Level 2 & 3 Flood-MAR Scenarios

	Water Available For Recharge (WAFR)	PRESENTED TODAY "L3 FIRO-MAR" FIRO-MAR	Hybrid-MAR	PRESENTED TODAY "L3 RP-MAR" Recharge Pool-MAR
	High Flow Diversion Criteria	SOM instream flows available after meeting	ediate hthly flow between November and March	
VEL 2	Reservoir Operations	 Forecast Informed Reservoir Ops (FIRO) 	Recharge PoolFIRO	 Recharge Pool
Ē	Primary Management Objective	 Flood Control Ecosystem Management 	 Flood Control Aquifer replenishment for DAC's and subsidence mitigation Ecosystem management 	 Flood Control Aquifer replenishment for water supply
	Secondary Management Objective	 Aquifer replenishment for water supply 	 Aquifer replenishment for water supply 	 Ecosystem Management
	Infrastructure Improvement	Field turnout capacityOff-channel habitat	Field turnout capacityConveyance capacity	Field turnout capacityNew recharge basins

LEVEL 3

MERCED RIVER WATERSHED

STUDY

WATER AVAILABLE FOR RECHARGE, WATER SUPPLY, AND FLOOD RISK

DAVID ARRATE (DAVID.ARRATE@WATER.CA.GOV) | CWEMF ANNUAL MEETING | 4/5/2022

Sustainable Conservation

WATER & POWER

Session 16. Merced River Flood-MAR Study

- 1. Overview
- 2. Water Available for Recharge, Water Supply and Flood Risk Benefits
- 3. In-depth Discussion of Ecosystem Effects
- 4. Multi-sector Performance Using Risk-based Analytics

SOURCE: Reservoir Operations Model (HEC-ResSim)

How much is (physically) available for recharge?

Preliminary Results – Subject to Change

- 2/3 from Merced River and 1/3 from local creeks.
- Major rivers systems are a substantial <u>but</u> an intermittent supply source of water for recharge.
- Local creeks provide a more reliable supply of water for recharge.

Foothill runoff 19%

Local Creeks 13%

SOURCE: Reservoir Operations Model (HEC-ResSim)

When is it available?

- Year-to-year
 variation in supply sources is also
 reflected in the daily
 variability.
- Some of this variability can be managed by reoperating reservoirs

SOURCE: Recharge Optimization Model (GRAT)

Can we use it all?

- Preliminary Results Subject to Change
- Almost all of the available water can be put to use.
- ~10% left unused, on average
 - too much water over a small period of time – limited by delivery capacity
 - too late in the season – limited land available for recharge

SOURCE: Recharge Optimization Model (GRAT)

Where to put it? Preliminary Results – Subject to Change

- Canal network
- "Available" agricultural land based on crop compatibility calendar
- Fields with good drainage, higher depth to GW, and outside Corcoran Clay layer are prioritized.**

**Additional criteria can be added to further refine field selection or prioritization.

System Performance

Performance evaluated with respect Performance evaluated with respect to to Baseline Current Conditions

Baseline DT3DP1.1 Scenario

Performa	nce Indica	ator: Decline	No significant change	provement						
Proliminary	reliminary Results - Subject to Change						ADAPTA	TION PERFOR	MANCE	
i reminary i	reminary Results – Subject to change					DT3DP1.1		DT3DP1.1		
					BAS	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR	
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277	1,277	
	Conditions	; Runoff	Nov – Mar	TAF/ season	434	688	688	688	688	
				Apr – Oct	TAF/ season	689	589	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854	854	
		Water Available For Recharge	Available (Nov – Mar)	TAF/ season			90	119	151	
			Applied (Nov – Mar)	TAF/ season			<mark>79</mark> (88%)	111 (93%)	145 (96%)	

Groundwater storage will continue to decline under business as usual

Recharge through canals and agricultural fields

Recharge through canals and agricultural fields

٠

•

٠

Potential to store more water in the aquifer system

System Performance

Performance evaluated with respect to Baseline Current Conditions

Performance evaluated with respect to Baseline DT3DP1.1 Scenario

Performa	nce Indicat	tor: Decline	No significant change	Improvement					
Droliminary D	Doculto Subio	of to Change	•	VULNE	RABILITY	ADAPTATION PERFORMANCE			
Fremmary Results – Subject to Ghange					CURRENT DT3DP1.1		DT3DP1.1		
					BAS	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277	1,277
	Conditions	ns Runoff	Nov – Mar	TAF/ season	434	688	688	688	688
- <u>`</u> _ 0			Apr – Oct	TAF/ season	689	589	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854	854
		Water Available	Available (Nov – Mar)	TAF/ season			90	119	151
		For Recharge	Applied (Nov – Mar)	TAF/ season			<mark>79</mark> (88%)	111 (93%)	145 (96%)
*	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501	506
	Groundwater (GW)	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-35	-32	-15

Flood-MAR increases groundwater levels in Disadvantaged Communities

Flood-MAR Increases Groundwater DACs

Preliminary Results – Subject to Change

System Performance

Performance Indicator: Decline | No significant change | Improvement **VULNERABILITY ADAPTATION PERFORMANCE Preliminary Results – Subject to Change** CURRENT **DT3DP1.1 DT3DP1.1** BASELINE L1 INTERM. L3 FIRO-L3 RP-MAR MAR Upper Watershed 1,277 Oct – Sep TAF/ year 1.123 Watershed 1,277 1,277 Runoff Conditions 688 Nov – Mar TAF/ season 434 688 688 688 589 Apr – Oct TAF/ season 689 589 589 589 854 **Applied Demand** Agricultural Demand (Oct – Sep) 800 TAF/ year 854 854 854 Water Available 90 119 151 TAF/ season Available (Nov – Mar) ------For Recharge 79 (88%) 111 (93%) 145 (96%) TAF/ season Applied (Nov – Mar) -----**GW Pumping** 499 506 Water Supply/ Oct – Sep TAF/ year 466 Groundwater -60 -35 -32 -15 ∆ GW Storage Change in basinwide GW storage TAF/ year -50 (GW) Δ GW Levels Aquifer east of Corcoran Clay layer Feet/ year -0.8 -0.2 -0.1 0.3 -0.6

WHERE you recharge matters and can support management objectives

Performance evaluated with respect to <u>Baseline Current Conditions</u> Performance evaluated with respect to Baseline DT3DP1.1 Scenario

Climate Vulnerability – Surface Water & Flood Risk

Performance Indicator: Decline | No significant change | Improvement

Preliminary Results – Subject to Change

*

VULNERABILITY

CURRENT DT3DP1.1

BASELINE

Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277
Conditions	Runoff	Nov – Mar	TAF/ season	434	688
		Apr – Oct	TAF/ season	689	589
	Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854
	Water Available	Available (Nov – Mar)	TAF/ season		
	For Recharge	Applied (Nov – Mar)	TAF/ season		
Water Supply/	GW Pumping	Oct – Sep	TAF/ year 40		499
Groundwater	∆ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60
(GW)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-0.8
Water Supply/	Lake McClure	End of October Storage	Avg. TAF	518	474
Surface Water	Storage	# Years allocation $\leq 80\%$	Years	7	7
(300)	Deliveries	Oct – Sep	TAF/ year	355	372
Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	42,412
	Flood Conditions	# Years with flows > 7300 cfs	Years	0	9

Climate Vulnerability (1956 Event)

Level 1 = Existing Infrastructure + High Flows

	Initial	Intermediate	Robust
Time Window	December to March	<u>November</u> to March	November to March
Protective Threshold	90 th Percentile Daily Flow	90 th Percentile <u>Monthly</u> Flow	<u>500 cfs</u>
Diversion Amount	Up to minimum of 20% of total flow or available conveyance capacity	<u>Up to available</u> <u>conveyance capacity</u>	<u>Up to available</u> conveyance capacity
Recharge Location	Canal-Only	Canal & <u>On-Farm</u>	Canal & On-Farm
		PRESENTED TODAY "L1 Interm."	

L1 Intermediate - Recharge using High Flows

Reservoir Reoperation – L3 FIRO-MAR

- Increases flood release capacity (6,000 +1,900cfs)
- FIRO Operations (5-day forecast period)
- 50 TAF Buffer above flood rule curve
- Eco Pool Operations
 - ✓ Eco Pool Account (reshaping flood control and snowmelt releases)
 - ✓ Shorebird release
 - ✓ Off channel habitat inundation release
 - ✓ Spring pulse release
- Increased minimum flow release

L3 FIRO-MAR – Future Climate (1956 Event)

Reservoir Reoperation – L3 RP-MAR

- Increases flood release capacity (6,000 +1,900cfs)
- Draws storage down to 100TAF below TOC
 - Releases up to available Main Canal capacity
- Tracks the cumulative storage deficit created by Recharge Pool releases
- The deficit is refilled when:
 - Delta is in excess conditions
 - Reservoir would've spilled during baseline operations

L3 RP-MAR – Future Climate (1956 Event)

System Performance

Performance evaluated with respect to Baseline Current Conditions

Performance evaluated with respect to Baseline DT3DP1.1 Scenario

Performa	nce Indicat	tor: Decline	No significant change	Improvement					
Preliminary I	Preliminary Results – Subject to Change				VULNEF CURRENT	ABILITY DT3DP1.1	ADAPTATION PERFORMANCE		
					BAS	ELINE	L1 INTERM.	L3 FIRO- MAR	L3 RP-MAR
	Watershed	Upper Watershed	Oct – Sep	TAF/ year	1,123	1,277	1,277	1,277	1,277
	Conditions	Runoff	Nov – Mar	TAF/ season	434	688	688	688	688
			Apr – Oct	TAF/ season	689	589	589	589	589
		Applied Demand	Agricultural Demand (Oct – Sep)	TAF/ year	800	854	854	854	854
		Water Available	Available (Nov – Mar)	TAF/ season			90	119	151
	For Recharge		Applied (Nov – Mar)	TAF/ season			<mark>79</mark> (88%)	111 (93%)	145 (96%)
* 🔺	Water Supply/	GW Pumping	Oct – Sep	TAF/ year	466	499	499	501	506
	Groundwater	Δ GW Storage	Change in basinwide GW storage	TAF/ year	-50	-60	-35	-32	-15
	(GW)	Δ GW Levels	Aquifer east of Corcoran Clay layer	Feet/ year	-0.6	-0.8	-0.2	-0.1	0.3
	Water Supply/	Lake McClure	End of October Storage	Avg. TAF	518	474	474	472	435
	Surface Water	Storage	# Years allocation $\leq 80\%$	Years	7	7	7	8	9
	(SW)	Deliveries	Oct – Sep	TAF/ year	355	372	372	369	367
	Flood Risk	Merced River	100-year max simulated flow	cfs	6,004	42,412	40,552	15,660	8,774
	Flood Conditions	# Years with flows > 7300 cfs	Years	0	9	9	1	2	

Key Study Messages

- 1. Study results communicate to different water sectors
- 2. Common hydrology and integrated modeling facilitate consistent exploration of effects <u>and tradeoffs</u> across all sectors
- 3. Study is designed to showcase, <u>not optimize</u>, the multi-sector benefits and outcomes
- 4. Adaptation strategies address both existing and future vulnerabilities
- 5. Study focuses on water physically available
- 6. Recharge schedule can be safely designed around the existing land uses and ag practices
- 7. Flood-MAR builds water supply resilience
- 8. Intentional recharge can help achieve different management objectives and benefits
- 9. Climate change will likely increase flood risk
- 10. Flood-MAR could help reduce flood risk and reservoir reoperations could provide the most flood risk reduction benefits

QUESTIONS?

DAVID ARRATE

DAVID.ARRATE@WATER.CA.GOV

Sustainable Conservation

WATER & POWER