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Some Groundwater Model Myths

1. The model is only as good as the data.

2. A corollary: we build the model by first
determining the water budget (and

parameters) and plugging into the model...
3. “A” groundwater budget exists.

4. If there’s no identifiable confining bed, the
system is unconfined.



Myth 1: The model is only as good
as the data

* A more accurate adage: Better data always
produces a better model.

e Key distinguishing point: Groundwater models
represent the physics of groundwater flow
virtually perfectly. This can be leveraged to
calculate/estimate unknowns using the knowns
(e.g., calibration).

*An even better adage: The model is only as
good as the data, the model algorithm’s
representation of the physics, and the skill of the
modeler.



Myth 2: We build the model by first
determining the water budget (and

parameters)...

e Reality: The groundwater model is typically the
main, and best way of calculating the
groundwater budget.

* Why? Consider the typical groundwater budget
and an apparent contradiction:
e Dominated by pumpage and recharge!
* Pumpage is mostly unmeasured.
* Recharge is unobservable, and also unmeasured.

* Yet we are able to build reliable groundwater models
that produce reliable groundwater budgets.



How? (for the irrigated basin case)

*By estimating pumpage and recharge using a
crop-consumptive use analysis

* And validating or constraining that water
budget using model computation of

1. Hydraulic head

2. Fluxes that can be compared to measured
fluxes (e.g., spring or stream baseflow discharge;
drain flows)



Crop Consumptive Use Approach to Computing Pumpage and Recharge
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Crop Consumptive Use Approach to Computing
Pumpage and Recharge

Crop Surveys

(actual ET: AET)

Irrigation Applied
Efficiency Irrigation Water
(e,=AET/A.,) (A,,=AET/e))

Surface Water

Deliveries (SW)

Computed Computed
Pumpage Recharge
(QC=AIW_SW) (RC=A|W[1-EI])

Essential Data

AET: From CA CIMIS stations and
crop coefficients; or satellite
methods.

e;: AET/A,,, . Fraction of the
applied irrigation water (A,,)
evapotranspired by the crop
(including plant transpiration and
soil evaporation). Comes from
knowledge of local irrigation
practices; input from
knowledgeable agricultural
engineers very important.

SW: In CA comes from DWR or
local irrigation or water district
data.
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Coachella Valley Groundwater Model Example
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Coachella Valley Groundwater Model Example
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Flow, in acre-ft

Modeled & Measured Drain Flows, Coachella V.
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Myth 3: “A” groundwater budget exists;
Reality: The terms are transient and interdependent

Model Historical Water Budget, Coachella Valley
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Myth 4: If there’s no identifiable confining
bed, the system is unconfined

Classic “confined” (Fetter, 2018) Classic “unconfined” (Fetter, 2018)

Water table well

i
p— = Potentiometric
surface

A FIGURE 3.22
Artesian and flowing well in confined aquifer.

A FIGURE 3.23 )
Perched aquifer formed above the main water table on a low-permeability layer in the
unsaturated zone.



San Joaquin Valley Groundwater (from Faunt, 2009)
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Typical Concept of Aquifer Recharge

Evapotranspiration




Sierra Nevada
Mountains
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Typical Subsurface Complexty, LLNL Site (Carle & Fogg, 1996)
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Vertical (17

a Orange Co., CA (Tompson, Carle,
000 Rosenberg, and Maxwell, 1999)



So what?

Groundwater-Surface Water
Interaction in the Southeastern
Sacramento Valley
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Groundwater Elevations (ft - msl)
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Groundwater Elevations (ft - msl)
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Groundwater elevation (ft - msl)

Bear River measured & modeled (C2VSIM, 2013) h
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Key Point (Myth 4)

* Without properly calibrating for model
representation of vertical head gradients and

vertical anisotropy, the model will not properly
represent critically important dynamics of the
aquifer system:

* Interplay between pumping and recharge

* Groundwater and surface water interaction

 Shallow and deep response to recharge

e Effects and dynamics of ‘sweet spots’ of greater
vertical connectivity for recharge

e Groundwater budgets



Summary

* Ironically, the best groundwater budget typically
comes from a carefully constructed and calibrated
model, not the other way around (Myths 1 & 2).

* All groundwater budgets are dynamic and not static;
hence a model is essential for anticipating how the
budget terms will change under different water
management strategies (Myth 3).

* Recognize that most of our aquifer systems are
definitely NOT unconfined, but rather, leaky confined
(i.e., semi-confined) (Myth 4).

* Modeling approaches are still too strongly 2D rather
than 3D — need to fully extend to 3D by representing
semi-confined or leaky confined conditions by
calibrating vertical anisotropy to data on vertical h
gradients (Myth 4).

* Good data and models are key to making “the
invisible visible!



