IWFM-OPS: Innovative Approaches to Linking Integrated Hydrologic and Reservoir Systems Analysis Models

CWEMF Annual Meeting Folsom, California April 4 – 6, 2022

Emin Can Dogrul California Department of Water Resources

Modeling Platforms IWFM: Integrated Water Flow Model

- Generic integrated hydrologic modeling software
- Simulates water flow within the hydrologic cycle
- Calculates agricultural and urban water demands; uses stream diversions and groundwater pumping to meet the demands
- Notable applications: C2VSimCG, C2VSimFG, local models to assist development of GSPs

Modeling Platforms WRIMS: Water Resources Integrated Modeling System

- Generic reservoir systems and water allocation analysis software
- Simulates reservoir operations and water allocations under physical, legal and operational constraints
- Network-flow-programming based simulation
- Incorporates a flexible language interface (WRESL) to define the mathematical model
- Notable applications: CalSim 2, CalSim 3, CalLite

IWFM-OPS: Wrapper for IWFM and WRIMS

- Coordinates calculations, data passing, and iterations between IWFM and WRIMS
- Complete streamlining and consistency between IWFM and WRIMS models
- Tries to make modelers' work easier
- Full functionality of both IWFM and WRIMS engines are retained

Modeling with IWFM-OPS Basics

- Initial step: Development and calibration of an IWFM model; all physical system definition (stratigraphy, stream network, diversion and bypass locations, etc.) and flow routing are done in the IWFM model
- Next step: Development of the IWFM-OPS model; build WRIMS model on top of the IWFM model to simulate operations and decision making
- All system-related information must be defined in the IWFM model; e.g. cannot introduce a diversion or stream node in WRIMS model which doesn't exist in the IWFM model

Modeling with IWFM-OPS Use of keywords

WRIMS Representation

Mustuse IWFM numbering convention in

- Must use IWFM numbering convention in naming state and decision variables (SVARs and DVARs) in WRESL code
 - Stream flow: C_xxx (e.g. C_356 instead of C_SAC296)
 - Diversion: DIV_xxx (e.g. DIV_251 instead of D_SAC296_02_SA)
 - Diversion requirement: DIV_REQ_xxx (e.g. DIV_REQ_251; this is the demand computed by IWFM and served by diversion 251)
 - Stream boundary inflow: I_xxx (e.g. I_1 instead of C_SHSTA)
 - Bypass flow: BYPS_OUT_xxx (e.g. BYPS_OUT_11)
- Corresponding SVARs and DVARs are automatically generated for WRIMS

- No operations/constraints defined for reach:
 - Automatically generates 1 continuity equation for the entire reach
 - > Automatic SVARs (computed by IWFM):
 - Reach net accretion
 - Stream inflow into node 205
 - > Automatic DVARs (computed by WRIMS):
 - Stream flow at node 210

- An operation/constraint defined at node 205 (e.g. minimum flow requirement, diversion requirement, etc.):
 - Automatically generates 2 continuity equations for the reach
 - For node 205
 - For nodes 206-210 combined
 - > Automatic SVARs (computed by IWFM):
 - Net accretion to node 205
 - Net accretion to nodes 206-210 combined
 - > Automatic DVARs (computed by WRIMS):
 - Stream flows at nodes 205 and 2

- WRIMS model size (number of SVARs and DVARs) independent of the underlying IWFM model size (number of stream nodes, groundwater nodes, elements)
- Automatically generated stream flow continuity equations, SVARs and DVARs can be different for each cycle

• The logic of IWFM-WRIMS linkage is coded into IWFM-OPS; no need to call external DLL functions from WRESL code

- The logic of IWFM-WRIMS linkage is coded into IWFM-OPS; no need to call external DLL functions from WRESL code
- Number of iterations between WRIMS and IWFM are dynamic to achieve a userspecified convergence criteria

- The logic of IWFM-WRIMS linkage is coded into IWFM-OPS; no need to call external DLL functions from WRESL code
- Number of iterations between WRIMS and IWFM are dynamic to achieve a userspecified convergence criteria
- Water demand computations are dynamic within a model run (efficient simulation of climate change scenarios; opens possibility to dynamically modify crop acreages)

- The logic of IWFM-WRIMS linkage is coded into IWFM-OPS; no need to call external DLL functions from WRESL code
- Number of iterations between WRIMS and IWFM are dynamic to achieve a userspecified convergence criteria
- Water demand computations are dynamic within a model run (efficient simulation of climate change scenarios, opens possibility to dynamically modify crop acreages)
- Allows gradual building of the WRIMS model

• Ability to forecast future water demands to guide monthly reservoir operations

- Ability to forecast future water demands to guide monthly reservoir operations
- Implemented parallel processing to decrease runtimes

Future Developments

- Additional work to speed-up convergence between IWFM and WRIMS models
- Link IWFM-OPS to WRIMS GUI
- Incorporate the ability to impose groundwater-related goals and constraints
- Incorporate agricultural-production-type models to simulate crop acreages under future climate, legal, operational and economic settings

Questions?

