Using the Coastal Storm Modeling System (CoSMoS) to assess climate-driven coastal hazards across California

Patrick L. Barnard^{1*}, Kees Nederhoff², Li H. Erikson¹, Amy C. Foxgrover¹, Juliette Finzi Hart¹, Patrick Limber¹, Andrea C. O'Neill¹, Maarten van Ormondt⁷, Sean Vitousek¹, Nathan Wood³, Maya Hayden⁴, Jeanne M. Jones⁵ and Kevin Befus⁶

¹United States Geological Survey, Pacific Coastal and Marine Science Center, Santa Cruz, CA, 95060, USA ²Deltares USA. Silver Spring, MD 20910

³United States Geological Survey, Western Geographic Science Center, Portland, OR, 97201, USA

⁴Point Blue Conservation Science, Petaluma, CA, 94954, USA

⁵United States Geological Survey, Western Geographic Science Center, Menlo Park, CA, 94025, USA

⁶University of Arkansas

⁷Deltares. Delft, Netherlands

Point Blue Conservation science for a healthy planet COF

OUR COAST OUR FUTURE

Deltares

The Latest Science

- The past six years have been the six warmest years on record (WMO)
- "Global surface temperature has increased faster since 1970 than in any other 50-year period over at least the last 2000 years" (AR6)
- The rate of sea level rise has ~tripled since 1971, currently
 3.7 mm/yr (AR6)
- Sea level rise in the U.S. will be, on average, 25-30 cm (10-12 in) higher in the next 30 years, equivalent to SLR over the last century (Sweet et al., 2022)
- High tide flooding will increase by 3-12 times by 2050 (Sweet et al., 2022)

Sources: World Meteorological Organization (2021):, State of the Global Climate 2020.

IPCC (2021): Summary for Policymakers.

Sweet et al. (2022): Global and regional sea level rise scenarios for the United States: updated mean projections and extreme water level probabilities along U.S. coastlines.

The Relevance of Sea Level Rise

- Over 1 billion people are expected to live in the coastal zone by 2050
- <u>SLR will likely cause 'once-in-a-lifetime' coastal flooding</u> events to occur annually by 2050, and every day by 2100
- When considering storms and coastal change, ~3 times more people would be at risk
- In California
 - ~Half of beaches could be lost in addition to extensive ecological and cultural resources
 - Over 600,000 people and \$200 billion in property at risk by 2100 (6% of GDP)
 - <u>These potential impacts are ~ 10 times greater than the</u> worst wildfires and earthquakes California history

Coastal Vulnerability Approaches

Static

- Passive model, hydrological connectivity
- Tides only
- '1st order screening tool'

"Bathtub" models under predict flooding hazards

Coastal Vulnerability Approaches

Static

- Passive model, hydrological connectivity
- Tides only
- '1st order screening tool'

Dynamic: USGS-CoSMoS

- All physics modeled
- Forced by Global Climate Models
- Includes wind, waves, atmospheric pressure, shoreline change
- Range of SLR and storm scenarios

Coastal Storm Modeling System (CoSMoS)

- Physics-based numerical modeling system for assessing coastal hazards due to climate change
- Predicts coastal hazards for the full range of sea level rise (0-5 m) and storm possibilities (up to 100 yr storm) using sophisticated global climate and ocean modeling tools
- Developing coastal vulnerability tools in collaboration with federal, state, and city governments (~150 different agencies) to meet their planning and adaptation needs

Coastal Storm Modeling System (CoSMoS)

DEM and Computational Grids

DEM: 2 m horizontal resolution

Hydrodynamic grids: fine to 5 m

Viewing Coastal Hazards

Viewing Coastal Hazards

Our Coast, Our Future tool: www.ourcoastourfuture.org

Societal Implications

California

- 600,000+ residents
- \$200 billion in property
- 4,700 km of roads
- 350 critical facilities (e.g., schools, police stations, hospitals)

Hazards Exposure Reporting and Analytics (HERA) www.usgs.gov/apps/hera

Shoreline Change

Approach Highlights

- Predicts future coastal change based on the SLR scenarios and total water level projections (CoSMoS-COAST).
- Auto-tunes model parameters along 50-m spaced transects to best fit historical data (LiDAR and satellite imagery)
- Projects coastal erosion hazards incorporating SLR, cross-shore and longshore transport, and sediment supply
- Erosion hazard maps for daily and storm conditions

Vitousek, S., Barnard, P.L., Limber, P., Erikson, L.H. and Cole, B., 2017. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. *Journal of Geophysical Research-Earth Surface*, Volume 122, p. 782-806, http://dx.doi.org/10.1002/2016JF004065

How Sea Level Rise Affects the Groundwater Table

How Sea Level Rise Affects the Groundwater Table

Groundwater Modeling

Befus, K.M., Barnard, P.L., Hoover, D.J., Finzi Hart, J.A. and Voss, C.I., 2020. Increasing threat of coastal groundwater hazards from sea-level rise in California. *Nature Climate Change*, Volume 10, p. 946-952, <u>https://doi.org/10.1038/s41558-020-0874-1</u>

Viewing Coastal Hazards

Groundwater Impacts?

California exposure

<u>(2 m of SLR)</u>

- 4 million residents
- \$1.1 trillion in property
- 1.1 million acres of ecologicalrich coastal land (e.g., grasslands, forest, wetlands)
- 33,000 km of roads
- 3,000 critical facilities (e.g., schools, police stations, hospitals)

*6-9 times greater exposure then overland flooding

Source:

Hazards Exposure Reporting and Analytics (HERA) www.usgs.gov/apps/hera

How has CoSMoS been used?

- **Dozens of cities and counties for updating their Local Coastal Programs (LCPs) for hazard mitigation and climate adaptation**
- Caltrans to assess the vulnerability of transportation \bullet infrastructure across the state
- California Coastal Commission to evaluate coastal construction permits
- Integrated into state climate change guidance
- California State Legislature used CoSMoS/HERA results as \bullet justification for passing a \$3.7 billion climate resilience spending package
- Current applications include operational flood forecasting in SF Bay, and expansion in Pacific Northwest, Alaska, Pacific Islands and Southeast U.S.

*For more information:

Patrick Barnard, USGS: pbarnard@usgs.gov

USGS CoSMoS data: www.usgs.gov/cosmos Our Coast - Our Future tool: www.ourcoastourfuture.org HERA Tool: www.usgs.gov/apps/hera

OUR COAST OUR FUTURE

DF