CALIFORNIA CENTRAL VALLEY GROUNDWATER-SURFACE WATER SIMULATION MODEL - FINE GRID (C2VSIMFG)

Sensitivity Analysis

Sensitivity Analysis Goals

- To enhance the understanding of the relationships between inputs and outputs,
- To evaluate the robustness and stability of the model,
- To provide an overall range of accuracy to model results.
- To understand the impact of inaccuracies in input data on model results,
- To develop an understanding of the relative sensitivity of the hydrologic cycle components,

Sensitivity Analysis Parameters

Input	Applied Change
Root Zone Ksat Root Zone Lambda	Factor of 0.1, 0.2, 0.5, 2.0, 5.0, 10.0 +/- 20%
Target Soil Moisture	+/- 0.1, 0.2
Evapotranspiration Rate	+/- 10%, 20%
Aquifer Kh, Kv; Aquitard Kv	Factor of 0.5, 0.67, 1.5, 2.0
Specific Yield Specific Storage	+/- 20% Factor of 0.1, 0.2, 5.0, 10.0
Streambed Hydraulic K	Factor of 0.2, 0.5, 2.0, 5.0
Layers 1,2 Initial GW Head	+/- 10 ft
Small Watersheds Recession Coefficient & Max. Recharge Rate	Factor of 0.2, 0.5, 2.0, 5.0

Sensitivity Analysis Metrics

Spatial Extent

- Entire Domain
- Sacramento R. HR,
- San Joaquin R. HR,
- Tulare Lake HR.

Model Calibration

- GWL
 - RMSE
 - R2
 - Average Residual
- Streamflows
 - Freeport (Sacramento R.)
 - Vernalis (San Joaquin R.)

Water Budget Components

- Ag. Supply Requirement
- Ag. Surface Water Deliveries
- Ag. Groundwater Pumping
- Total Pumping
- Percolation
- Net Gain from Stream
- Net Subsurface Inflow
- Inflow from Small Watersheds
- Change in GW Storage

Sensitivity Analysis Metrics

Spatial Extent

- Entire Domain
- Sacramento R. HR,
- San Joaquin R. HR,
- Tulare Lake HR.

Model Calibration

- GWL
 - RMSE
 - R2
 - Average Residual
- Streamflows
 - Freeport (Sacramento R.)
 - Vernalis (San Joaquin R.)

Water Budget Components

- Ag. Supply Requirement
- Ag. Surface Water Deliveries
- Ag. Groundwater Pumping
- Total Pumping
- Percolation
- Net Gain from Stream
- Net Subsurface Inflow
- Inflow from Small Watersheds
- Change in GW Storage

Model Calibration, RMSE

Ag. Supply Requirement

Evapotranspiration

Target Soil Moisture

Change in Groundwater Storage

Root Zone Parameters

GW System Parameters

Change in Groundwater Storage

Root Zone Parameters

GW System Parameters

Sensitivity Analysis – Key Takeaways

- Parameter values tested usually decreased model performance, while a few showed slight improvement in residual statistics
 - Kh x 2 lowered RMSE by 12.7 feet, increased R2 by 0.08
 - TSM 0.1 lowered RMSE by 8.7 feet, increased R2 by 0.05
 - These parameter changes may cause unreasonable parameter values and/or affect calibrated agricultural water demands.
- Ag. Supply Requirement is most sensitive to soil saturated K
- Percolation and pumping are most sensitive to soil saturated K
- Change in Storage is most sensitive to ET
- Gain from stream is most sensitive to soil saturated K