

3D Modeling of Lithology and Aquifer Temperature for Development of MODFLOW Calibration Zones

CWEMF 2022 Annual Meeting, Session 22 April 6, 2022 Ralph Simon, P.G., Woodard & Curran Breanna Clabourne, Woodard & Curran Reza Namvar, PhD, PE, Woodard & Curran

Project Background

Objective: Simulate Flow Under the Dam

- Under different scenarios
 - Head
 - Drawdown
 - Velocity
 - Etc.
- Located within existing San Jacinto groundwater basin MODFLOW model

- Model Refinement
- Model Calibration & Sensitivity
- Model Runs
- Evaluate Results & Describe Model Construction

- Model Refinement
 - Extract & expand
 - Discretize horizontally & vertically
 - Establish site-specific K calibration zones based on lithology & aquifer temperature
- Model Calibration & Sensitivity
- Model Runs
- Evaluate Results & Describe Model Construction

- Model Refinement
- Model Calibration & Sensitivity
 - Establish initial K based on measured site data
 - Calibrate model to historical data
 - Sensitivity analysis
- Model Runs
 - Evaluate Results & Describe Model Construction

				"								
KH												
1:	30											
12	20	_	_									
12	10		Numerical	Code	КН (1	ft/d)	KV (1	ft/d)	SY	· (%)	SS (1	ft ⁻¹)
1:	20	Lithology Code	Numerical Lithology Group	Code Includes USCS Soil Types	KH († Low	ft/d) High	KV († Low	ft/d) High	SY Low	' (%) High	SS (1 Low	ft ⁻¹) High
1: 1 ⁻ 1(90	20 10 00	Lithology Code 0	Numerical Lithology Group Clayey Sand	Code Includes USCS Soil Types SC	KH (1 Low 2.84E-03	ft/d) High 2.84E-01	KV (1 Low 2.84E-04	ft/d) High 2.84E-02	SY Low 3	7 (%) High 28	SS (1 Low 3.90E-05	ft ⁻¹) High 6.20E-
1:	20 10 00	Lithology Code 0	Numerical Lithology Group Clayey Sand Sand	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW	KH († Low 2.84E-03 2.84E+00	ft/d) High 2.84E-01 2.84E+02	KV (1 Low 2.84E-04 2.84E-01	ft/d) High 2.84E-02 2.84E+01	SY Low 3 10	7 (%) High 28 35	SS (1 Low 3.90E-05 3.90E-05	ft ⁻¹) High 6.20E- 3.10E-
1: 11 10 90 80	20 10 00 00	Lithology Code 0 1 2	Numerical Lithology Group Clayey Sand Sand Silt	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML	KH (1 Low 2.84E-03 2.84E+00 2.84E-03	ft/d) High 2.84E-01 2.84E+02 2.84E-01	KV (1 Low 2.84E-04 2.84E-01 2.84E-04	ft/d) High 2.84E-02 2.84E+01 2.84E-02	SY Low 3 10 3	/ (%) High 28 35 19	SS (1 Low 3.90E-05 3.90E-05 1.50E-04	ft ⁻¹) High 6.20E- 3.10E- 3.90E-
12 11 10 90 80 70	20 10 00 10 10 10 10 10 10 10 1	Lithology Code 0 1 2 3 3	Numerical Lithology Group Clayey Sand Sand Silt Silty Sand	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML SM	KH (1 Low 2.84E-03 2.84E-03 2.84E-03 2.84E-02	ft/d) High 2.84E-01 2.84E+02 2.84E-01 2.84E-01	KV (1 Low 2.84E-04 2.84E-01 2.84E-04 2.84E-03	ft/d) High 2.84E-02 2.84E+01 2.84E-02 2.84E-02 2.84E-02	SY Low 3 10 3 3	7 (%) High 28 35 19 28 28	SS (1 Low 3.90E-05 3.90E-05 1.50E-04 3.90E-05	ft ⁻¹) High 6.20E- 3.10E- 3.90E- 6.20E-
11 11 11 90 80 70		Lithology Code 0 1 2 3 4 5	Numerical Lithology Group Clayey Sand Sand Silt Silty Sand Clay	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML SM CH, CL-ML, CL SC SM	KH (1 Low 2.84E-03 2.84E+00 2.84E-03 2.84E-02 2.84E-06	ft/d) High 2.84E-01 2.84E+02 2.84E-01 2.84E+00 2.84E-03	KV (1 Low 2.84E-04 2.84E-01 2.84E-04 2.84E-03 2.84E-07	ft/d) High 2.84E-02 2.84E+01 2.84E-02 2.84E-01 2.84E-04 2.84E-04	SY Low 3 10 3 3 0	r (%) High 28 35 19 28 5 5 5	SS (1 Low 3.90E-05 3.90E-05 1.50E-04 3.90E-05 2.80E-04	ft ⁻¹) High 6.20E- 3.10E- 3.90E- 6.20E- 6.20E- 6.20E-
12 11 10 90 80 70 60		Lithology Code 0 1 2 3 4 5 6	Numerical Lithology Group Clayey Sand Sand Silt Silty Sand Clay Silty Clayey Sand Gravel	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML SM CH, CL-ML, CL SC-SM GM GW GP	KH (1 Low 2.84E-03 2.84E-00 2.84E-03 2.84E-02 2.84E-02 2.84E-02 2.84E-02	ft/d) High 2.84E-01 2.84E+02 2.84E-01 2.84E+00 2.84E-03 2.84E+00 2.84E+00	KV (1 Low 2.84E-04 2.84E-01 2.84E-04 2.84E-03 2.84E-07 2.84E-03 2.84E-03	ft/d) High 2.84E-02 2.84E+01 2.84E-02 2.84E-01 2.84E-04 2.84E-01 2.84E-01	SY Low 3 10 3 3 0 3 3 12	r (%) High 28 35 19 28 5 28 5 28 28	SS (1 Low 3.90E-05 3.90E-05 1.50E-04 3.90E-05 2.80E-04 3.90E-05 2.80E-04	ft ⁻¹) High 6.20E- 3.10E- 3.90E- 6.20E- 6.20E- 6.20E- 6.20E-
1: 1' 1' 9 9 8 1 71 6 6 5		Lithology Code 0 1 2 3 4 5 6 6 7	Numerical Lithology Group Clayey Sand Sand Silt Silty Sand Clay Silty Clayey Sand Gravel Fill	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML SM CH, CL-ML, CL SC-SM GM, GW, GP FILL	KH (1 Low 2.84E-03 2.84E+00 2.84E-03 2.84E-03 2.84E-02 2.84E-02 2.84E-02 2.84E+01 2.84E+01 2.84E+01	ft/d) High 2.84E-01 2.84E+02 2.84E+02 2.84E+00 2.84E+00 2.84E+03 2.84E+03 2.84E+03	KV (1 Low 2.84E-04 2.84E-04 2.84E-04 2.84E-03 2.84E-03 2.84E-03 2.84E-03 2.84E-04	ft/d) High 2.84E-02 2.84E+01 2.84E-02 2.84E-01 2.84E-04 2.84E-04 2.84E-02 2.84E+02 2.84E+02	SY Low 3 10 3 3 0 3 12 3	r (%) High 28 35 19 28 5 28 5 28 35 28 35	SS (1 Low 3.90E-05 3.90E-05 1.50E-04 3.90E-05 2.80E-04 3.90E-05 1.50E-05 1.50E-05	ft ⁻¹) High 6.20E- 3.10E- 3.90E- 6.20E- 6.20E- 6.20E- 6.20E- 3.10E- 3.10E- 3.10E-
1: 1: 1: 9: 9: 8: 7: 6: 5: 5: 4:		Lithology Code 0 1 2 3 4 5 6 7	Numerical Lithology Group Clayey Sand Sand Silt Silty Sand Clay Silty Clayey Sand Gravel Fill	Code Includes USCS Soil Types SC SW-SM, SP-SM, SP, SW ML SM CH, CL-ML, CL SC-SM GM, GW, GP FILL	KH (1 Low 2.84E-03 2.84E+00 2.84E-03 2.84E-02 2.84E-02 2.84E-02 2.84E+01 2.84E-03	ft/d) High 2.84E-01 2.84E-02 2.84E-01 2.84E-00 2.84E-03 2.84E+03 2.84E+03 2.84E+03	KV (1 Low 2.84E-04 2.84E-01 2.84E-04 2.84E-03 2.84E-03 2.84E-03 2.84E+00 2.84E+00 2.84E-04	ft/d) High 2.84E-02 2.84E+01 2.84E-02 2.84E-01 2.84E-01 2.84E-04 2.84E+02 2.84E+02 2.84E+02	SY Low 3 10 3 3 0 3 12 3	(%) High 28 35 19 28 5 28 35 28 35 35	SS (1 Low 3.90E-05 3.90E-05 1.50E-04 3.90E-05 2.80E-04 3.90E-05 1.50E-05 1.50E-05 1.50E-05 1.50E-05	ft ⁻¹) High 6.20E- 3.10E- 3.90E- 6.20E- 6.20E- 6.20E- 3.10E- 3.10E-

- Model Refinement
- Model Calibration & Sensitivity
- Model Runs
- Evaluate Results & Describe Model Construction
 - Various outputs, tables, etc.
 - Maps, cross-sections, & 3D visualizations of input & output parameters

EVS (Earth Volumetric Studio) Approach

C Tech Development Corporation

Three-dimensional volumetric Earth Science software

EVS Approach – Available Data

- Lithology data for 341 boreholes
- Downhole temperature data for 112 wells, monthly, over 2 years

Observation Well OW-103

		9/27/2016	12/8/2016	2/10/2017	3/9/2017	4/6/2017
Depth	Elevation	Temp	Temp	Temp	Temp	Temp
(ft bgs)	(ft)	(°C)	(°C)	(°C)	(°C)	(°C)
22	1454.83	21.55	22.24	22.07	21.84	21.54
24	1452.83	21.28	21.99	22.05	21.82	21.63
26	1450.83	21.13	21.82	22.02	21.83	21.65
28	1448.83	21.07	21.69	21.96	21.84	21.69
30	1446.83	21.06	21.59	21.89	21.83	21.70
32	1444.83	21.08	21.51	21.83	21.81	21.72
34	1442.83	21.12	21.49	21.77	21.78	21.72
36	1440.83	21.14	21.47	21.67	21.71	21.72
38	1438.83	21.20	21.48	21.63	21.66	21.70
40	1436.83	21.26	21.49	21.61	21.62	21.68
42	1434.83	21.29	21.48	21.59	21.61	21.66
44	1432.83	21.34	21.49	21.58	21.59	21.64
46	1430.83	21.37	21.50	21.56	21.57	21.63
48	1428.83	21.39	21.51	21.56	21.56	21.61
50	1426.83	21.41	21.52	21.55	21.55	21.60
52.27	1424.56	21.44	21.54	21.55	21.55	21.59

EVS Approach – Overview (Calibration Zones)

- Use interpolation to estimate lithology types & aquifer temperature at all locations in 3D space
- Assign lithology type & temperature to each MODFLOW cell based on values at the cell centroid
 - Lithology types become zones
 - Temperature classified manually into A and B subzones

EVS Approach – Lithology Model

 Simplified lithology descriptions to fit in 8 generalized categories

	DWR	W&C			
Group Symbol	Group Name	Lithology Code	Lithology Group		
FILL	Fill	7	Fill		
СН	FAT CLAY	4	Clay		
CL-ML	SANDY SILTY CLAY	4	Clay		
CL	SANDY LEAN CLAY	4	Clay		
ML	SILT	2	Silt		
SC	CLAYEY SAND	0	Clayey Sand		
SC-SM	SILTY CLAYEY SAND	5	Silty Clayey Sand		
SM	SILTY SAND	3	Silty Sand		
SW-SC	Well-Graded SAND with Clay	1	Sand		
SP-SC	Poorly Graded SAND with Clay	1	Sand		
SW-SM	Well-Graded SAND with Silt	1	Sand		
SP-SM	Poorly Graded SAND with Silt	1	Sand		
SP	Poorly Graded SAND	1	Sand		
SW	SILTY SAND with Gravel	1	Sand		
GM	SILTY GRAVEL	6	Gravel		
GW	Well-Graded GRAVEL with Sand	6	Gravel		
GP	Poorly Graded GRAVEL	6	Gravel		

EVS Approach – Lithology Model

- Simplified lithology descriptions to fit in 8 generalized categ
- Generate EVS input (.LSD

fit in 8 generalized categories	DWR			W&C		
ne m o generalized eategones	Group Symbol	Group Name		Lithology Code	Lithology Group	
▶ Generate EVS input (ISDV) file	Fill		7	Fill		
Generate Evo input (.ESD v) me	СН	FAT CLAY		4	Clay	
	CL-ML	SANDY SILTY CLAY		4	Clay	
	CL	SANDY LEAN CLAY		4	Clay	
# C Tech Data Exporter generated LSDV File from DWR Lithology 2021.05.05.	# C Tech Data Exporter generated LSDV File from DWR Lithology 2021 05 05 XLSX (05/05/2021 9:42)					
Depth "4 Clay" "2 Silt" "0 Clayey Sand" "5 Silty Clayey Sand" "3 Silty Sand" "5 Silty Clayey Sand" "3		0	Clayey Sand			
# Columns [LSDV]: "X" "Y" "Depth" "X" "Y" "Bottom" "Lithology_Group" "Poir 6280566 288 2250313 457 6 0 6280566 288 2250313 457 7 0 0 1 1608		5	Silty Clayey Sand			
6280566.288,2250313.457,7.0,6280566.288,2250313.457,7.85,0,A-1,1608		3	Silty Sand			
6280566.288,2250313.457,7.9,6280566.288,2250313.457,13.3,0,A-1,1608	ith Clay	1	Sand			
6280566.288,2250313.457,13.3,6280566.288,2250313.457,13.8,1,A-1,1608 6280566 288 2250313 457 13 8 6280566 288 2250313 457 17 7 0 A-1 1608	, with Clay	1	Sand			
6280566.288,2250313.457,17.7,6280566.288,2250313.457,18,0,A-1,1608	ith Silt	1	Sand			
6280566.288,2250313.457,18.0,6280566.288,2250313.457,18.85,0,A-1,1608		with Silt	1	Sand		
6280566.288,2250313.457,18.9,6280566.288,2250313.457,19.3,1,A-1,1608		1	Sand			
6280566.288,2250313.457,22.4,6280566.288,2250313.457,22.8,2,A-1,1608	el	- 1	Sand			
6280566.288,2250313.457,31.6,6280566.288,2250313.457,33.1,1,A-1,1608			<u>_</u> ,		Cravel	
6280566.288,2250313.457,33.1,6280566.288,2250313.457,36,1,A-1,1608				0	Gravei	
6280501.153,2250292.951,3.0,6280501.153,2250292.951,18,0,A-2,1617			with Sand	6	Gravel	
6277659.661,2251708.167,5.5,6277659.661,2251708.167,5.5,2,8-1,1481.913			L	6	Gravel	

EVS Approach – Lithology Kriging

Adaptive Indicator krig module

- Kriging of each lithology to determine probability at each node in a 3D grid
- Lithology with highest probability at a node location is assigned to the node
- Grid is split to create smooth boundaries surrounding areas of same lithology

Woodard & Curran

Woodard & Curran

EVS Approach – Temperature Kriging

- Assumption:
 - Surface water is cold
 - Warms as it travels through aquifer
 - Colder aquifer areas downgradient of reservoir = transport zones
- Selected April 2018 based on
 - Large dataset size
 - High temperature contrast
- Import temperature point measurements to EVS .APDV format
- Interpolate using 3D Estimation module
 - Estimates temperature at each grid node location

- EVS Model Result

Identification of MODFLOW calibration zones

EVS – Assign attributes to MODFLOW centroids

- Identify MODFLOW centroid points & import to EVS
- Use Interpolate Cell Data / Interpolate Node Data modules
 - Append lithology / temperature data from 3D models to MODFLOW centroids

EVS – Assign attributes to MODFLOW centroids

- Export cell centroid data
- Lithology Zones 1 8
- Manually categorize cells based on temperature for each MODFLOW layer
 - Append "A" to transmissive cells
 - "B" to less transmissive cells

MODFLOW Zone Matrices for Each Layer

🗗 Output Matrix CrossTab_20210525 🛛 📉							
2 13	7 • 138 •	139 -	140 -	141 -	142 -	143 🗸	144 🔹
				· · · · · · · · · · · · · · · · · · ·			
1	1	1					
1	1	1	3	3A	3B		
1	1	1	3	3A	3A	3B	3B :
1	2	3	3A	3A	3A	3B	3B :
1	2	3A	3A	3A	3A	3B	3B :
2	3	3A	3A	3A	3A	3B	3B :
2	3A	3A	3A	3A	3A	3B	3B :
2	3A	3A	3A	3A	3A	3B	3B :
2A	3A	3A	3A	3A	3A	3A	3B :
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3A	3A	3A (
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3A	3A	3A :
3A	3A	3A	3A	3A	3B	3B	3B :
3A	3A	3A	3A	3B	3B	3B	3B 3

MODFLOW was calibrated, run, & sensitivity analysis conducted

Results – EVS Display

Difficulties Encountered

Cell lithology based on value at the cell centroid

- May not account for large quantities of other materials in a cell
- Thermal data potential confounding factors
 - Vertical flow in aquifer or wells
 - Downgradient warming
 - Difficulty correlating temperature differential to aquifer properties
- Kriging lithology is resource intensive
- Scale of lithology & temperature models is large but must be highresolution
- MODFLOW results require subsetting for use in EVS
- EVS data management limitations require other solutions

Advantages of EVS Method

- MODFLOW model calibration zones and aquifer properties correspond with real site lithology
 - Further informed by temperature distribution
- Ability to evaluate MODFLOW results without respect to model grid
 - Oblique cross-sections, slices, maps, etc.
 - Augment results with other site features (wells, roads, trenches, etc.)
 - 3D, animation

Thank You!

