Balancing the Water Needs of Coho, Suckers and Agriculture with The Klamath Basin Planning Model

Dan Easton

MBK Engineers

California Water and Environmental Modeling Forum

April 4, 2022

Upper Klamath Lake Suckers

Klamath River Coho Salmon

Klamath Project Potatoes

Klamath Project Details

- Approximately 200,000 acre-feet irrigated farmland
- Historical Ag diversions (prior to regulation) varies from 350,000 acre-feet to 450,000 acre-feet per year
- Two National Wildlife Refuges: Tule Lake and Lower Klamath
- Upper Klamath Lake water surface elevations are maintained between 4,138 feet and 4,143.3 feet MSL. This provides an operable storage capacity of 430,000 acre-feet.
- Five gaged points of diversion: A Canal, Station 48 PP, Miller Hill PP, North Canal, and Ady Canal

Klamath Basin Planning Model

- WRIMS based water supply planning model
- Daily timestep
- First version of the daily timestep model was developed by Nancy Parker and Kristin White around 2011
- Historic hydrologic input over period of record (WY 1981-present)
- Models Klamath Project operations from Upper Klamath Lake to resulting Klamath River flow downstream of Iron Gate Dam

Klamath Basin **Planning Model** Schematic

115

15

Iron Gate

Dam

C15 Klamath River flow downstream of Iron Gate Dam

KBPM Developed to Support Klamath Project ESA Analysis

- 2013 NMFS and FWS Biological Opinions
 - Placed first nominal upper bound on project surface water supply that varied with hydrologic conditions
- 2016 Update to Biological Opinions
 - Add 20,000 acre-feet to spring Klamath River flow depending on hydrologic conditions, tested first surface flushing
- 2018 Court Injunction of NMFS Biological Opinion

Mandated surface flushing flow and dilution flow

- 2019 NMFS and FWS Biological Opinions
 - Klamath River surface flushing flow included
- 2020 Interim Operations Plan
 - Increase spring flow augmentation from 20,000 acre-feet to 60,000 acre-feet depending on hydrologic conditions

Upper Klamath Lake Net Inflow

Key Takeaways

- Surface flushing flow combined with sucker spawning elevation requirements result in unreliable project supply and too frequent project shutdowns.
- Historic hydrology may be insufficient for analyzing the impacts of a proposed action.
- With Pacificorp dams coming out, there is hope.