
Protocols for Water and 
Environmental Modeling 

November 19, 2021 





Project Team 

This work was guided by the Modeling Protocols Committee of the California Water and Environmental 
Modeling Forum (CWEMF). Committee members are: Rich Satkowski (California State Water Resources 
Control Board, Retired; Committee Chair), Jamie Anderson (California Department of Water Resources), 
Will Anderson (Contra Costa Water District), Mike Deas (Watercourse Engineering), John DeGeorge 
(Resource Management Associates), Ben Geske (Delta Stewardship Council), Tariq Kadir (California 
Department of Water Resources), Josué Medellín-Azuara (University of California, Merced), George 
Nichol (California State Water Resources Control Board, Retired), Nicky Sandhu (California Department of 
Water Resources), Tad Slawecki (LimnoTech), Ali Taghavi (Woodard & Curran), and Chuching Wang 
(Metropolitan Water District of Southern California). 

The consultant team at Tetra Tech consisted of Sujoy Roy, Paul Hutton, Katherine Heidel, John Rath, and 
Arushi Sinha.  

Acknowledgements 

Funding for the consultant team was provided by the California Water and Environmental Modeling 
Forum (CWEMF). This work benefited from a series of focused meetings with practitioners in early 2020 
to discuss the state of modeling in various water resource-related disciplines. Meeting participants are 
identified in Appendix A. This work also benefited from related modeling documents recently produced 
by the California Delta Stewardship Council. Bethany Robinson and Jonathan Herman of the University of 
California at Davis provided a summary of literature and case studies under an initial phase of this work. 
The authors also thank peer-reviewers that provided feedback on an earlier version of this document. 





i 

Contents

Foreword ......................................................................................................................................... iiv

Executive Summary ............................................................................................................................ v

Glossary of Terms and Acronyms ....................................................................................................... xi

1 Introduction ................................................................................................................................1

1.1 What are Models?............................................................................................................................ 1 

1.2 Typical Uses of Models .................................................................................................................... 5 

1.3 Individual, Team and Institutional Roles in Modeling ..................................................................... 6 

1.4 Other Published Modeling Protocols ............................................................................................... 7 

1.5 Workshops to Elicit Insight from Practitioners ................................................................................ 8 

1.6 Motivation for Current Work ........................................................................................................... 9 

1.7 Proposed Use of these Protocols ................................................................................................... 10 

2 Modeling Study Types ................................................................................................................ 12

2.1 Modeling with Established Frameworks ........................................................................................ 12 

2.2 Modeling where Science is Evolving .............................................................................................. 12 

2.3 Modeling with Multiple Frameworks or Across Disciplinary Boundaries ...................................... 13 

3 Preliminary Analyses .................................................................................................................. 14

3.1 Define the Question(s) ................................................................................................................... 14 

3.2 Translate Question(s) into Modeling Analysis ............................................................................... 15 

3.3 Identify Available Information ....................................................................................................... 19 

3.4 Model Selection ............................................................................................................................. 21 

3.5 Schedule and Resource Considerations ......................................................................................... 26 

4 Framing the Modeling Study ...................................................................................................... 28

4.1 Frame the Analysis ......................................................................................................................... 28 

4.2 Model Preparation and Evaluation ................................................................................................ 29 

4.3 Summary ........................................................................................................................................ 42 

5 Application of the Model............................................................................................................ 43

5.1 Consideration of Generalization During Application of Calibrated and Validated Model............. 43 

5.2 Modeling in Support of Planning and Decision-Making ................................................................ 43 

5.3 Modeling in Support of Science and Research .............................................................................. 45 

5.4 Modeling in Support of Real-Time Operations .............................................................................. 45 

5.5 Modeling in Support of Dispute Settlement .................................................................................. 46 

5.6 Post Audit after Application: Compare Model Results to Future Data Being Collected ................ 46 



Contents CWEMF Modeling Protocols 

ii SS

6 Communicating and Documenting Results .................................................................................. 47

6.1 Presenting Results .......................................................................................................................... 47 

6.2 Documentation .............................................................................................................................. 48 

6.3 Review of Model and Study ........................................................................................................... 49 

7 Encouraging Collaboration in the Modeling Community .............................................................. 54

7.1 User Groups ................................................................................................................................... 54 

7.2 Virtual Community of Practice ....................................................................................................... 55 

8 Emerging Technologies Supporting Model Development ............................................................. 56

8.1 Innovations in Data Capture .......................................................................................................... 56 

8.2 Data Analysis Frameworks ............................................................................................................. 61 

8.3 Machine Learning Methodologies and Frameworks ..................................................................... 66 

8.4 Data Visualization and Communication Techniques ..................................................................... 71 

8.5 Workflow Organization Tools ........................................................................................................ 73 

8.6 New Methods in Software Engineering and Architecture ............................................................. 73 

9 Model Life Cycle Management ................................................................................................... 78

10 Next Steps in the Implementation of Modeling Protocols ............................................................ 80

10.1 Using the Modeling Protocols ........................................................................................................ 80 

10.2 Targeted Outreach ......................................................................................................................... 80 

10.3 Future Updates of the Modeling Protocols ................................................................................... 81 

11 References ................................................................................................................................. 83

Appendix A:  Attendees at Discipline-Specific Targeted Meetings Held in Davis, CA ......................... A-1

Appendix B:  Inventory of Models................................................................................................... B-1

Figures 

Figure 1. Visual representation of common terms used in this document. ................................................. 3 

Figure 2. Key roles in modeling studies. ....................................................................................................... 7 

Figure 3. Generalized modeling steps for a topic with well-developed theoretical frameworks and 
computer implementation. Some typical loop-backs are shown, although in principle any 
step can loop back to a prior step. ............................................................................................... 13 

Figure 4. Generalized modeling steps for a topic where the scientific understanding is still evolving. 
Some typical loop-backs are shown, although in principle any step can loop back to a prior 
step. .............................................................................................................................................. 13 

Figure 5. Conceptual representation of the uptake of selenium, a bioaccumulative element, in 
ecosystems from water to biota. Kd represents the partition coefficient between dissolved 
and particulate phases and TTF represents the Trophic Transfer Factor. ................................... 16 

Figure 6. A schematic representation of the concepts of accuracy and precision. The center of each 
circle is the desired target. ........................................................................................................... 22 



CWEMF Modeling Protocols Contents 

iii 

Figure 7. The conceptual relationship between model complexity, data availability, and 
performance (modified from concepts in Grayson and Blöschl, 2001). ...................................... 23 

Figure 8. A schematic representation of model fitting (blue line) for observed data (red points). The 
left plot shows a model that is too simple for the data, and the right plot suggests a model 
overfitting the data. The middle plot is a conceptual representation of the “right” level of 
complexity. ................................................................................................................................... 23 

Figure 9. Major elements in model systems. .............................................................................................. 29 

Figure 10. Schematic representation of a complex error surface with multiple local minima. ................. 35 

Figure 11. Visualization of adequacy of model performance. Following Crout et al. (2008), but 
applied to salinity at Martinez in the western Delta, using observed data (Hutton et al., 
2015) and a published model of salinity (Rath et al., 2017). ....................................................... 37 

Figure 12. Simplified representation of sensitivity and uncertainty analyses. Inputs in this context 
may include parameter values, initial conditions and boundary conditions that are used for 
a single model run. ....................................................................................................................... 41 

Figure 13. Illustration of the concept of local (left panel) and global sensitivity analysis (right panel) 
for a model with two parameters. ............................................................................................... 42 

Figure 14. Illustration of concept of parameter generalization and the global parameter space. ............ 44 

Figure 15. Illustration of spatial relationships such as distance, proximity, contiguity, affiliation, co-
occurrence, dependence, and segmentation. ............................................................................. 57 

Figure 16. Big data analysis can help benefit both black box and process-based modeling 
approaches. Modified from Karpatne et al. 2017. ....................................................................... 62 

Figure 17. Graphical illustration of an artificial neural network, a recurrent neural network (RNN), 
and a convolutional neural network (CNN). The structure of a RNN and a CNN explain why 
they are better suited for time-series and classification problems respectively. However, 
the neural network structures above can be applied to a variety of machine learning 
problems. ..................................................................................................................................... 68 

Figure 18. Diminishing returns in ensemble learning. ................................................................................ 70 

Figure 19. The life-cycle of a typical model. ............................................................................................... 78 

Tables 

Table 1. Typical Model Types Used for Water and Environmental Modeling .............................................. 4 

Table 2. Examples of Prior General Guidance for Water and Environmental Modeling .............................. 7 

Table 3. Common Model Performance Evaluation Metrics ....................................................................... 32 

Table 4. Model Emulation Approaches ...................................................................................................... 63 



Contents CWEMF Modeling Protocols 

iv SS

Foreword 
In 2000, the Bay-Delta Modeling Forum (the predecessor organization of CWEMF) developed the 
document “Protocols for Water and Environmental Modeling,” which provided protocols and guidelines 
for the development and use of mathematical models for water planning and management in California. 
This document is an update, more than 20 years after the original, reflecting changes in the practice of 
water and environmental modeling. These changes have been driven by the nature of questions being 
asked today, technological advancements in hardware and software tools for modeling, and the 
increasing role of stakeholders and decision-makers in the modeling process. This update of the 2000 
document reflects the current practice of modeling by addressing these issues.  

Mathematical modeling is a central part of the decision-making framework for virtually all water 
resources questions addressed in California today. CWEMF believes that acceptance and implementation 
of modeling protocols by California’s water community will result in better and more defensible models 
and modeling studies by: 

 Improving the performance and reliability of models; 

 Providing better documentation of models and modeling studies; 

 Providing easier professional and public access to models and modeling studies; 

 Making models and modeling studies more easily understood, transparent, and amenable to 
examination and reproduction by others; and 

 Increasing confidence in models and modeling studies. 

CWEMF accepted “Protocols for Water and Environmental Modeling” on November 19, 2021 and is 
assisting CWEMF members and other interested parties in implementing the modeling protocols. Since 
this report is a “living document,” it will be updated periodically, as the need arises. The authors 
recommend that CWEMF reconvene its Ad Hoc Modeling Protocols Committee at least once every three 
years to ascertain whether a partial or full update is needed. As specified in CWEMF’s bylaws, it should be 
noted that this report does not necessarily represent the views of the governing bodies of the 
represented organizations or the individual members of CWEMF. Furthermore, in the view of the 
CWEMF, these protocols are intended to represent best practices and guidelines, but are not proposed to 
be a requirement for use in environmental and water resources modeling in California. 
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Executive Summary 
Mathematical modeling using computers—comprising a variety of mechanistic, statistical, optimization-
based and other emerging techniques—has become indispensable for managing water in California. Such 
modeling is used for a variety of essential tasks, including supporting compliance with regulations, 
managing water rights, planning for future changes due to growth and climate change, designing of new 
infrastructure and planning for environmental restoration. Only through the use of computer simulations 
can the large amounts of data and the complex interactions involving water, ecosystems, and human 
systems be adequately understood and predicted. Thus, major water-related projects are rarely 
undertaken in California without the support of some model-based analyses. This dependence on models 
raises important questions about quality control among stakeholders and decision-makers.  

This work builds on a prior set of modeling protocols, developed in 2000 by the Bay-Delta Modeling 
Forum (the predecessor organization of CWEMF), and reflects changes in the practice of modeling, key 
technological developments, and applications addressing problems relevant today. These protocols are 
intended to serve modelers, i.e., technical specialists who develop and/or run models, as well as the 
broader community of model sponsors and stakeholders, who have an interest in the quality and 
reliability of a modeling study.  

This document describes modeling approaches used to address water resources problems, including 
analytical/numerical models that simulate individual and/or integrated physical processes over a defined 
domain; statistical/empirical models based on relationships among observed data but with little to no 
process representation; optimization-based models that seek to meet key objectives subject to defined 
constraints; machine learning-based models, a sub-class of statistical/empirical models with a wider range 
of algorithms and capacity to handle disparate data sets; and agent-based models that represent 
behavior of organisms or populations (animal or human) in response to external factors. These protocols 
focus on general approaches and methodologies that apply to different model domains, rather than on 
specific models. Furthermore, this document describes what the authors believe are typical modeling 
efforts and overall best practices. However, there are always exceptions to a general description of a 
complex activity, and it is entirely possible that specific modeling efforts evolve in ways different from 
those described here, such as in the sequence of steps or the involvement of individual participants as 
outlined here.  

The term “model” is used throughout this document as a general term for a quantitative and simplified 
representation of a system. However, a further distinction is made through the use of model framework, 
another general term for the theoretical implementation of a process-oriented model. A model 
framework will usually need to be configured for application to different geographic settings, and is 
termed a model application. Model applications are a greater, although not the only, focus of this 
protocol document.1

This work provides a summary of actions to be taken at various stages of the modeling process, divided 
into the four broad phases (Figure ES-1), including:   

1 For example, the Central Valley Hydrologic Model (CVHM) is a model application of the MODFLOW model framework. See 
Appendix B for more examples of model frameworks and model applications.  
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 Preliminary analyses,  

 Framing the modeling study,  

 Application of the model, and  

 Communicating and documenting results.  

Figure ES-1. Visual representation of the phases of a typical modeling study. Feedback between some phases is 
common.  

Although the above figure shows a well-defined beginning and an end, for complex water and 
environmental problems it is not uncommon for modeling to be a continual process, with one study 
serving merely as the beginning of another generation of studies. Observed data are an important part of 
a model analysis, as described in the following chapters, although the collection, processing and storage 
of data are not a specific focus of this protocols document. 

Preliminary analyses begin with a clear statement of the question to be answered through modeling, and 
assess whether a model is, in fact, a useful tool to address the problem. If so, study participants should 
determine what type of model would be most useful, and then whether an existing model can be used for 
this purpose or whether a new model needs to be developed. The level of model complexity chosen is 
often informed by the scale and difficulty of the problem to be addressed, budget and schedule 
considerations, and the type and amount of available data. A clear statement of the goals of the model 
study, best developed in a transparent, open, and collaborative environment with stakeholders, will 
establish the long-term vision of model development to most efficiently and best serve the needs of a 
project. Based on this evaluation, a suitable model may be selected. Early thinking about these processes 
and communicating the path forward with other study participants will avoid surprises during the 
performance of the study. 

Framing the modeling study is the process of setting up and running the model and obtaining useful 
results. The first step in this phase involves defining the analysis, where important details are addressed 
such as the geographic and temporal scope of the study, setting problem domain, boundary and initial 
conditions available to run the model, the questions to be asked which lead to the type of scenarios to be 
evaluated, the time frame of the analysis, and whether or not multiple models need to be integrated for 
the analysis. A flexible framing of the analysis may allow greater opportunity for adjustment as new 
information becomes available. The next step involves preparation and operation of the model, which 
includes, configuration of the model with background properties, compiling data needed, and calibrating 
the model. Model calibration is essential in most environmental models, and includes the modification of 
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adjustable parameters to achieve reasonable match between the model generated results and observed 
and/or reported data. Once calibrated, a model is tested against an independent set of empirical data, to 
assess its general applicability. Often the term “validation” is used for this step in some scientific 
literature, although we prefer more neutral terms such as testing or evaluation. In many cases, model 
testing may result in additional adjustments to the model parameters, which leads some to considering 
this step as part of calibration. In many cases, additional analyses may be used to better understand the 
overall behavior of a model, including an uncertainty analysis which attempts to describe model behavior 
with inputs and parameters varied to represent imperfect knowledge, and sensitivity analysis, which 
explores the sensitivity of the model to individual inputs and parameters (uncertainty and sensitivity 
analysis are related concepts).  

Application of the model is performed to ask the questions it was designed for, which often involve 
conditions that are different from what is directly observable today. This phase should generally occur 
only after the model has been successfully evaluated, thus establishing the credibility of the model. The 
relevant decisions to be made and processes to be followed during the model application phase depend 
on the four unique classifications of applications: i) planning and decision support, ii) science support and 
research, iii) real-time operations support, and iv) dispute settlement support.  

Communicating and documenting results is the next phase of modeling and includes peer reviews, an 
element especially important for water resources and environmental models because such modeling is 
often driven by stakeholder interest. Good practices in these areas, notably the allocation of enough time 
for these tasks to be done adequately, are described.  

These protocols present an overview of two additional related areas. The first area includes a review of a 
variety of emerging technologies being embedded in modeling and that have the prospect of changing 
future practice of modeling. The second addresses long-term beneficial activities around specific 
modeling themes that transcend the concerns of an individual study. These include management 
activities around the life cycle of a model and the development of a community around a model or a 
problem theme.  

Many concepts identified in this document are perhaps known to most modelers but are not consistently 
adopted. This may be due to time and resource limitations of modeling studies; this may also be from the 
lack of specific expectations in the broader community of modelers and model users. Thus, model users 
may not know what specific and reasonable requests to make of modelers to guide a model study toward 
greater credibility and usefulness. Toward this end, this work concludes with specific outreach actions to 
model specialists, model sponsors, general stakeholders who may be non-modelers, and to academic 
research students and non-modelers.  

To succinctly describe the concepts identified in this work and encourage adoption of these best 
practices, we provide three summary checklists, corresponding to different phases of modeling. Checklist 
1 is designed to be employed at the inception of a modeling effort and to enable various participants to 
agree on the basic features of the work to be done. The purpose of Checklist 2 is to evaluate and score a 
modeling exercise upon completion. Checklist 3 is useful for assessing the management approach for the 
overall life cycle of a modeling framework. 
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Checklist 1. Model Study Initial Appraisal Prior to Study Inception 

Item Description Response 

1 Is the problem or question to be addressed well defined? Yes/No 

2 Do we know how the model results will be used and who will use 
the results? 

Yes/No 

3 Is the model to be used specified?  Yes/No 

4 Has a conceptual framework been developed? Yes/No 

5 Have the criteria for selecting the model been defined? Yes/No 

6 Is an existing model going to be modified? Yes/No 

7 Is a new model to be developed? Yes/No 

8 Are the time frames known for initial model development, 
calibration, testing, and review? 

Yes/No 

9 Are data associated with intended model inputs available? Yes/No 

10 Are data associated with intended model outputs available (to 
support model calibration)? 

Yes/No 

11 Are time frames of the input and output data known and 
consistent with one another? 

Yes/No 

12 Are the errors in data measurements known? Yes/No 

13 Is the level of error in the expected results known? Yes/No 

14 Are the model stakeholders known? Yes/No 

15 Will stakeholders be part of the modeling process? Yes/No 

16 Have users of the model output met together? Yes/No 

17 Will documentation be prepared upon completion of the model? Yes/No 

18 Will the information embedded in the above questions be used to 
prepare a memo describing the model's purpose? 

Yes/No 
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Checklist 2. Model Study Post-Completion Appraisal 

Item Description 

Response  
(Numeric Score or 

narrative) 

1 Is the model a new formulation or the application of an existing code? If a 
new formulation, what has been done to test and verify the code? 

2 Has a conceptual framework been developed for this effort and has it 
been updated following completion? 

3 Are observed data used in the modeling exercise (input and output data) 
documented and available for review? 

4 Has the calibration approach been described? 

5 Has the model performance following calibration been adequately 
evaluated using test data? 

6 Has the sensitivity of major variables been evaluated? 

7 Has model output uncertainty been evaluated? 

8 Were any novel approaches used to evaluate the sensitivity and 
uncertainty of the model response to inputs? 

9 Were the model results compared and contrasted with other models (if 
available)? 

10 Has documentation of the model study been prepared? 

11 Was a peer review performed and responded to? 

12 What were the stakeholder’s reactions to the model results? 

13 Does the model study documentation adequately explain the approach, 
assumptions, and findings? Are the model summary documents easily 
understandable by a variety of audiences? 



Executive Summary CWEMF Modeling Protocols 

x SS

Checklist 3. Model Framework Life Cycle Evaluation 

Item Description Narrative Response  

1 Are all source codes and supporting files stored in a single location and 
archived in a manner that enables future access?  

2 Are the source codes documented, even if this documentation is not in 
the public domain? 

3 Is the model development dependent on a single individual? What is the 
long-term transition plan for the expertise in this model? 

4 Is the model framework applied by a community or by a single team?  Is 
there a mechanism to share knowledge about the model application over 
time, such as a virtual community, trainings, etc.? 

5 Is there a defined plan for making updates to the model framework?  

6 For a public-domain model framework, is there a funding mechanism to 
support staff that would work on the model? 

7 For a proprietary model framework, what is the mechanism to support 
the code development over the long-term? 
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Glossary of Terms and Acronyms 

Term Definition 

Aleatory uncertainty Aleatory or stochastic uncertainties originate from inherent variability and 
stochasticity of natural phenomena (e.g., climatic variability). Aleatory 
uncertainties cannot be reduced by collection of more data. 

All-at-a-time (AAT) A sensitivity analysis approach where all parameters can be varied at each 
iteration. This approach is typically used with global sensitivity analysis. 

Application Programming 
Interface (API)  

Software intermediary that allows two applications to communicate with 
one other. 

Boundary condition A condition that is required to be satisfied at all or part of the boundary of a 
region in which a set of differential equations is to be solved. 

Calibration The process of changing values of model parameters to achieve the best 
match or “fit” of the model results to field observations or reported values.  

Code Representation of the theoretical formulation of a model in computer 
language that serves as the basis for developing an executable model. In 
many cases, even for public-domain models, the underlying codes are not in 
the public domain. 

Code verification The process of testing the accuracy of the model’s computer representation 
of the theoretical formulation. This process includes code examination, 
testing bounding cases, and comparison against analytical solutions of 
underlying equations (when available). 

Conceptual framework Often referred to as the conceptual model. In this document, the term 
conceptual framework is used to avoid confusion with other uses of the word 
‘model’. A high-level representation of inputs, interacting physical processes 
to be modeled and the drivers, and outputs for any kind of process (e.g., 
physical, biological, economic, etc.). Although a conceptual framework may 
include quantitative information, it is often presented in non-quantitative 
form and serves to communicate the nature of system to be modeled and 
model structure in a transparent manner. A conceptual framework may be 
developed as a communication tool following the completion of a modeling 
study, or, during the initiation of the project, the conceptual framework can 
serve as the basis for selection of or development of a quantitative model.  

Crowdsourced data Data obtained for a particular task or project by enlisting the services of 
many people, either paid or unpaid, typically via mobile devices. 

DevOps This term refers to processes for version control, continuous integration, 
artifact management, automated testing, continuous delivery, and system 
monitoring that work together to both reduce the time to develop and 
deploy software and to improve reliability. 
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Term Definition 

Distributed parameter model Provides greater spatial and/or temporal resolution. A lumped parameter 
model, in contrast, aggregates variable information over time and/or space 
for simplification or to remedy limited data availability.  

Domain In this work, a specialized field of study. 

Driver A model process or parameter that has the greatest impact on key model 
outputs.  

Empirical/statistical model A mathematical formulation of inputs and outputs with limited process 
representation. Model parameters are typically calibrated with observed 
data. 

Emulator  A computationally simplified model representation that uses relationships 
between inputs and outputs. Emulators are typically developed to reduce 
the computational cost of model exploration.  

Epistemic uncertainty Epistemic uncertainties stem from our lack of knowledge and they can be 
reduced with additional collection of data. 

Equifinality Non-uniqueness of a model fit, i.e., when multiple parameter combinations 
can provide equivalent fits during the calibration process. This may occur 
with complex models with numerous fitting parameters. 

Evaluation A general term for a sequence of steps taken to understand the performance 
of a model following calibration. Evaluation may include comparison against 
independent input and output data sets, sensitivity analysis for key 
parameters, or uncertainty analysis. 

Global Sensitivity Analysis (GSA) A sensitivity analysis approach that analyzes the variability of model 
responses across the full parameter space.  

Initial condition The solution of a differential equation or iterative process over time requires 
the definition of values at the inception of the solution, termed the initial 
conditions. Other types of formulations, such as time series models, may also 
require initial conditions. 

Local Sensitivity Analysis (LSA) A sensitivity analysis approach that analyzes model responses around a well-
defined region of interest in the input parameter space.  

Lumped parameter model A model that aggregates variable information over time and/or space for 
simplification or to remedy limited data availability. A distributed model, in 
contrast, provides greater spatial and/or temporal resolution. 

Metadata A set of data or narrative descriptors for a data set. Often termed “data 
about data.” 

Model configuration The process of specifying background characteristics for a model simulation, 
e.g., the physical representation of a water body. Model configuration is 
performed once the theoretical framework of a model has been developed 
and implemented. 
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Term Definition 

Model application A model framework configured for application to a specific setting.  

Model framework A general term for the theoretical implementation of a process-oriented 
model. A model framework will usually need to be configured for application 
to a specific geographic setting. Many models in common use are general 
purpose frameworks that can be configured to represent the same set of 
processes in different regions (for example, watershed models), whereas 
others are developed from the ground up as applicable to a single location, 
and the configuration is embedded within the general setup. Other terms 
that might be used here include generalized model software, model 
executable program, computational engine, or simply, model. However, in 
this document we do not use the term “model” alone because it is not 
specific enough.  

Model integration An approach where two or more models, typically with different areas of 
focus, are used together in an integrated framework, such that certain 
information and data may be exchanged between the models to provide 
analysis across multiple domains. 

Model life cycle A term referring to the entire timeframe from conceptualization of a 
mathematical model to implementation in computer code and to multiple 
cycles of application, revision, and reuse in one or many different domains. 
Models of complex environmental systems generally require large investments 
and a lifecycle of many decades.  

Model structure The representation of model inputs, key processes and interactions, and 
outputs. A conceptual framework may graphically communicate the model 
structure, but even where a conceptual framework is not available, all 
process-based models require an underlying model structure. In the case of 
empirical models, internal processes are generally not represented, and 
model structure refers to the inputs that are selected a priori to influence 
the outputs. 

Model training Similar to model calibration and parameter estimation, but typically used in 
the context of machine learning. The process of adjusting empirical model 
constants to match model outputs and field observations. In the context of 
machine learning, the model constants may have no physical meaning. 

Monte Carlo simulation A general solution approach in modeling analysis where key values (e.g., 
parameter values in a model) are sampled randomly over a defined space to 
provide a range of conditions for testing. 

Numerical model Many quantitative models are represented by mathematical formulations, 
including partial differential equations that cannot be solved exactly (i.e., 
analytically) because of spatial and/or temporal extent or mathematical 
complexity. Numerical techniques (e.g., finite elements or finite differences) 
are commonly used approaches to estimate solutions to partial differential 
equations. Models that employ such numerical solutions are particularly 
common in the representation of physical and chemical processes and are 
termed numerical models. 
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Term Definition 

One-at-a-time (OAT) A sensitivity analysis approach where one parameter is changed at each 
iteration. Commonly used with local sensitivity analysis. 

Open source model Open source models are those where the underlying source code of the 
model is available for anyone to examine and modify, potentially creating a 
new executable version of the model.  

Parameter estimation Similar to calibration. The process of adjusting parameter values in a model 
such that the model output matches field observations within an acceptable 
error range. Some parameter values may be obtained from independent 
experiments, in addition to model runs.  

Parameters Numeric constants associated with key processes that typically represent a 
natural system feature (e.g., reaction rates or hydraulic conductivities). 
Parameter values may be known to lie within an expected range. The process 
of parameter estimation is to find a value or set of values that enables the 
model to fit observed or reported data within an acceptable range. 

Peer review A process where independent outside experts evaluate a modeling exercise, 
including the model code, framework, data, calibration process and results, 
and application.  

Probabilistic form A distribution of values based on a statistical method, as opposed to a single 
value.  

Proprietary model Proprietary models are owned by a non-public entity, the code and 
application data may not be available for review, and there may be a cost for 
leasing and applying the model.  

Public-domain model Public-domain models are those where the executable version of a model is 
available for use, although the source code may not necessarily be available. 

Quantitative Numerical or calculable, as opposed to qualitative. The quantitative model 
can be described by its mathematical approach. The conceptual framework is 
often presented in non-quantitative form and serves to communicate the 
nature of system to be modeled and model structure in a transparent 
manner. 

Sensitivity analysis The process of adjusting model parameters or inputs within a realistic range 
to explore the effect on, or sensitivity of, model outputs. Model sensitivity in 
a multi-parameter model may depend on the states of other parameters, 
and individual model outputs may be more or less sensitive to different 
parameters. A common goal of sensitivity analysis is to identify parameter(s) 
that have the greatest impact on key model outputs. See also: AAT, GSA, LSA, 
and OAT in this table.  

Stakeholder Stakeholders are participants who have an interest in the outcome of a 
modeling study.  

State variable Quantities tracked over time and space in a mathematical model. A state 
variable may be internal to the model calculation or reported as output. 
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Term Definition 

Statistical model See “Empirical/statistical model” above. 

Uncertainty analysis Model inputs or parameter values are presented in a probabilistic form (i.e., 
as a distribution of values) to a calibrated model, and the effects on model 
output evaluated. Given that model inputs and parameters typically and 
inherently include different degrees of error or uncertainty, the goal of 
uncertainty analysis is to quantify the range of outputs that reflect the range 
of errors or uncertainties in the model input data or parameters in a 
modeling study. 

Validation A set of steps used to demonstrate that, within its domain of applicability, a 
model possesses a satisfactory range of accuracy consistent with the 
intended application of the model. In more limited settings, particularly in 
the context of machine learning, validation refers to the process of applying 
a fitted model to an independent set of observed data to evaluate model fit. 
While the term validation is commonly used in the literature, for this work, 
we prefer more neutral terms such as testing and evaluation to describe this 
process.  
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1 Introduction 
Computer modeling—comprising a variety of mechanistic, statistical, optimization-based and other 
emerging techniques—has become indispensable for managing water in California and elsewhere. This 
water could be on the land surface, in rivers, lakes, estuaries, underground, or runoff from watersheds. 
Such modeling is used for a variety of essential tasks, including compliance with regulations, managing 
water rights, planning for future changes due to growth and climate change, design of new infrastructure 
and for environmental restoration. Only through the use of computer models can the large amounts of 
data and the complex interactions of water, ecological, and human systems be adequately understood, 
and the effects of change estimated. Major water-related projects are rarely undertaken in California 
without at least some model-based analyses. This dependence on California’s water and environmental 
models raises unavoidable, but healthy questions of quality control among the diverse water stakeholders 
and decision-makers.  

In 2000, the Bay-Delta Modeling Forum (the predecessor organization of CWEMF) developed the 
document “Protocols for Water and Environmental Modeling,” which provided protocols and guidelines 
for the development and use of models for water planning and management in California. This document 
is an update, approximately 20 years after the original, reflecting changes in the practice of modeling in 
the area of water resources and the types of questions being asked, with a new focus on climate change 
and new ways of addressing groundwater sustainability. While many essential features of modeling have 
evolved over this time, in some technological areas there has been more significant change, including 
advances in geospatial data availability, online data and code sharing, cloud-based computing, the use of 
smart phones as computer platforms, machine learning, sensor-based data sources and telemetry, and 
data visualization. Furthermore, large-scale modeling exercises are significant investments, to be 
sustained and preserved in a directed manner, much like other assets. Finally, there have also been 
cultural shifts related to modeling in the broader community. A greater recognition exists of the value of 
collaborative modeling with stakeholder participation, as opposed to modeling solely as a technocratic 
exercise by experts. This update of the 2000 protocols document reflects the current practice of modeling 
by addressing these issues.  

This document is written to serve the needs of model developers as well as model users who may 
sponsor and direct studies and may need to make decisions based on model results. This document is 
also relevant to stakeholders who are affected by model outcomes and subsequent decisions and need 
more transparency into what is reported in a model study. The protocols described here apply broadly to 
modeling across the environmental and water domains, but are not specific to a particular discipline or a 
particular model. Interested readers may explore a list of models in common use in California (Appendix B 
and link to an online inventory of models).  

1.1 What are Models? 

Within this document, a model is defined as a quantitative representation of a real-world system 
comprising physical, chemical, biological, economic, and social systems. These various systems often 
interact; in the context of a water system, an individual model may encompass more than one system. 
Although economic and social systems are represented by varied modeling frameworks, for these 
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disciplines our focus is on models where the natural environment is a major focus. Models can be used to 
ask “what if” questions—e.g., what might happen if a particular project is built or if a regulation is 
implemented—and are especially important for water resources and environmental problems over large 
spatial scales because no practical way exists to answer these questions through an experimental 
approach.  

1.1.1 Terminology 

Even though the term “model” is used throughout this document as a generic term for a quantitative 
representation of a system, further distinction is important (Figure 1). Typically, at the core of a model is 
an underlying theory or a conceptual framework (or a conceptual model) representing a process or set of 
interacting processes. Some processes, especially physical processes, are conceived in mathematical 
forms, whereas others (such as biological processes) may first be proposed in narrative form and then 
translated into a mathematical form. The mathematical representation needs to be solved, using 
different analytical or statistical methods, and is implemented through computer code. A model 
framework is a general term for the computer implementation of a theoretical process-oriented model. A 
model framework is a general tool; configuration refers to the incorporation of numeric values from a 
specific geographic setting. In this form it is termed a model application, and often model parameters are 
selected for a specific setting using a calibration and validation process. Many commonly available models 
are in fact general purpose model frameworks that can be configured to represent the same set of 
processes in different regions (for example, watershed models or groundwater hydrology models). In 
some cases, models are developed initially as an application for a single region, and the configuration is 
embedded within the general setup. In these instances, the model framework and application are one 
and the same. Typically, models that deal with problems that represent physical and chemical processes 
often have general purpose model frameworks, whereas models in fields such as biology or economics 
are more commonly developed initially to serve a specific need. The term model study typically refers to a 
specific set of scenarios or questions that are addressed with a model application. Some other important 
steps that occur during modeling, include peer review and preparation of supporting documentation, 
which can occur from the inception of a modeling effort to the completion of model study results. These 
terms are described in further detail in the rest of this document.  

Another commonly-used term is code, which refers to the computer instructions that underlie a model 
framework. The term simulator is also used and, depending on context, may be a reference to a model 
framework or an application.  
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Figure 1. Visual representation of common terms used in this document. 

1.1.2 Types of Models 

Several different mathematical approaches may be applied in the development of quantitative water and 
environmental models as shown in Table 1. The broad classes of mathematical approaches in use include 
analytical/numerical solutions of process equations over a defined extent; statistical/empirical models
that are based on relationships between observed data but typically contain little to no process 
representation; optimization based models that seek to meet key objectives subject to a set of defined 
constraints; machine learning based models, a sub-class of statistical/empirical models with a wider range 
of algorithms and capacity to handle disparate data sets; and agent-based models that represent 
behavior of organisms or populations (animal or human) in response to external factors. Several of these 
approaches may be combined within a single modeling system, resulting in a “hybrid” model. As 
described in the following chapters, the underlying approach adopted within a particular modeling 
framework affects the applicable best approaches for development. A final set of models, not discussed 
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in this document, are physical, scale models where a small-scale version of an object (typically a water 
body) is made to perform experiments and to understand the behavior of the larger system being 
represented. Such models have seen use in past decades, but in recent years have largely been replaced 
by computer-based models. 

Table 1. Typical Model Types Used for Water and Environmental Modeling 

Model type Feature 

Simulation Models Simulates the state of the system by solving a framework of process equations, either in 
closed analytical form or numerically; model parameters are typically calibrated with 
observed data. Such models may represent the natural system in one, two, or three spatial 
dimensions, depending on the processes being represented. 

Optimization Models Optimizes a set of key objectives that define the state of the system under a range of input 
conditions, and subject to a set of constraints. 

Statistical/Empirical 
Models 

Represents limited processes; model parameters are typically calibrated with observed 
data. 

Machine-learning 
Models 

Trained to find patterns or relationships in available data, but with minimal process-
oriented representation. These are an extension of the statistical/empirical models, but 
with a greater variety of emerging algorithms to represent increasingly complex data sets. 

Agent Models Represents individual behavior of organisms or populations (animal or human) in response 
to external factors over time and space. 

1.1.2.1 Simulation Models 

Simulation models are typically based on analytical and/or numerical solutions to the mathematical 
representation of the system. Analytical models normally consist of closed-form solutions to differential 
equations and have been used for relatively simple domains combined with a need for efficiency. 
Numerical models, which solve differential equations over space and/or time, are intended to simulate 
the state of the singular and/or integrated system that are defined by the mathematical representations 
over time and space. Numerical models are in widespread use, especially in the water flow and water 
quality domains. In recent years, such models have tended to grow more complex, with greater spatial 
and/or temporal resolution, and associated computational demands. For simplified domains, analytical 
solutions are important for testing the computer implementation of numerical models (termed model 
verification), which are prone to solution errors. Examples of simulation models include MODFLOW for 
groundwater modeling and SCHISM for estuarine hydrodynamic modeling (see Appendix B and online link 
to model inventory for more details). 

1.1.2.2 Optimization Models 

Optimization models are intended to optimize an objective function (such as maximizing profit or yield of 
the system) subject to certain constraints, such as physical, hydrologic, operational, economic, climatic, or 
infrastructure. For hydrologic systems, the outcomes are the water allocations to different users 
constrained by water availability, environmental flow requirements, operating rules, and the hierarchy of 
water rights. Examples of optimization models include Calvin for reservoir operations in California (see 
Appendix B and online link to model inventory for more details). 
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1.1.2.3 Statistical/Empirical Models 

Statistical/empirical models are usually based on development of statistical relationships among the 
various observed or recorded data sets with limited underlying process representation. Larger datasets 
often improve performance of statistical models. Examples of statistical/empirical models include the 
Jassby et al. (1995) model for salinity intrusion in Sacramento-San Joaquin River Delta.  

1.1.2.4 Machine Learning Models 

Machine learning models, a class of statistical/empirical models, offer a wide variety of emerging 
algorithms to find patterns or relationships in observed data or model output. Unlike most 
statistical/empirical models, machine learning models may contain large numbers of fitting parameters 
that result in complex statistical and/or mathematical relationships, which may not be evident to the end 
user, and would typically require special expertise to discern and interpret. Examples of machine learning 
models include artificial neural network models of salinity in the Sacramento-San Joaquin River Delta (see 
Appendix B and online link to model inventory for more details). 

1.1.2.5 Agent Models 

Agent models represent a system with agents (e.g., organisms, individuals, or households) that have 
individual behavior and respond to external drivers or to each other. Fish behavior models are a typical 
class of models that use the agent-based formulation. Examples of agent-based models include Delta 
STARS, an individual-based simulation model that predicts survival, travel time, and routing of juvenile 
salmon migrating through the Delta (see Appendix B and online link to model inventory for more details). 

1.2 Typical Uses of Models  

Commonly used models for water and environmental applications in California support a variety of 
applications that can be broadly classified as follows: 

 Planning, management and decision support – including, but not necessarily limited 
to, support for the development of new environmental regulations (e.g., changes to 
water quality standards, or water supply regulation), feasibility analysis of facility or 
operational modifications (e.g., changes to reservoir operating rules), assessment 
for  design of new infrastructure (e.g., new alternatives for Delta conveyance or 
evaluation of new dam sites, or evaluation of new groundwater facilities), and 
evaluation of effects of climate change on the performance of the system. As an 
example, models are being used to help develop groundwater sustainability plans 
across California, as part of the state’s Sustainable Groundwater Management Act 
(SGMA). 

 Science support, research and education – including the generation and testing of 
hypotheses to better understand a particular system, comprising natural and/or 
human elements. Modeling helps us develop a better understanding of complex 
systems and is a key tool for educating stakeholders and academic research 
students. Science support activities include understanding the population behavior 
of key species, food web interactions, and changes in landscape over the long-term 
due to human pressures, climatic change, and extreme events. 
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 Real-time operations support – including reservoir outflows for flood management 
and water supply, water exports from the Delta, barrier operations used to manage 
salinity at various locations, or drawdown effects at a well field or movement of 
contamination plumes as a result of specific groundwater operations. 

 Dispute settlement support – including legal proceedings in the context of water 
rights adjudication or allocation of water among different types of beneficial uses. 

Each application described above involves decisions wherein modeling provides fundamental information 
as a basis for potential decision and/or action. Since many decisions have large consequences to human 
communities and ecosystems, it is important to ensure that the models used are credible.  

1.3 Individual, Team and Institutional Roles in Modeling 

These modeling protocols were developed to serve a variety of participants involved in directing, 
executing, and evaluating the outcomes of a modeling study, including the model sponsor, model 
specialist, domain experts, decision makers, and stakeholders. Figure 2 shows the relationship among 
these participants. Usually, these participants belong to different institutions or organizations with 
different areas of interest and expertise. A model sponsor is an organization or group of organizations 
with an interest in the outcome and provide the resources for the modeling work. The sponsor will likely 
define the scope of the model study, including question(s) to explore, scenarios of interest, schedule, 
funding, etc.  

The development, testing, and reporting of a model study will likely be done by model specialists with 
knowledge of the specific domain and with relevant software development skills. In some cases, the 
model specialist may rely on a code developer to actually write the computer code to meet the needs of 
modeling. One or more domain experts, who are often the same as the model specialists, may help with 
interpreting and communicating model results to the sponsor and stakeholders. In some cases, the 
sponsor and other decision makers will not work directly with model specialists or model results. 

Finally, stakeholders with an interest in the outcome of a study may guide the process through the model 
sponsor or decision makers. Indeed, with the growing application of models in many areas of decision-
making, it is desirable to engage and enable stakeholders to play a larger role in modeling studies in a 
collaborative framework, both in California and more widely (Voinov and Bousquet, 2010; Voinov et al., 
2016). See also the discussion of shared-vision modeling in Section 6.3.3 below.  

Modeling studies focused on scientific advancement are often led by research teams and involve fewer 
participant roles than shown in Figure 2. Although such modeling studies may not be used directly by 
stakeholders and decision makers, they serve two roles: (i) the models mature over time and drive larger 
scale policy decisions, as described in the next chapter, or (ii) the individual expertise gained through 
model development gradually diffuses into the broader modeling community. 
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Figure 2. Key roles in modeling studies. 

1.4 Other Published Modeling Protocols 

As the science of water related modeling has matured and become more widely used, best modeling 
practices that emphasize particular modeling best practices for model development and application have 
been proposed. General guidance on water and environmental modeling that was published over the 
past two decades is presented in Table 2. Other domain-specific guidance has been developed and 
embedded within reviews of modeling studies in different disciplines, e.g., coastal and estuarine models 
(Ganju et al., 2016; Dawson et al., 2019); watershed models (Daniel et al., 2011); models for total 
maximum daily load (TMDL) development for water quality constituents (Shoemaker et al., 1997); models 
of nutrient behavior in aquatic systems (Trowbridge et al., 2016); and groundwater models developed for 
the Sustainable Groundwater Management Act (SGMA) (DWR, 2016). This document is informed by these 
published guidelines. Elements from these prior guidelines are cited, as appropriate, throughout the 
following chapters. Some agencies, such as the U.S. Army Corps of Engineers (USACE), have formal 
processes for auditing and certifying model results performed under their direction.  

Table 2. Examples of Prior General Guidance for Water and Environmental Modeling 

Year of Publication Title Author(s) Focus 

2000 Protocols for Water and 
Environmental Modeling 

California Water & 
Environmental 
Modeling Forum 
(formerly Bay-Delta 
Modeling Forum)  

Guidance on modeling protocols 
for the Bay-Delta 
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Year of Publication Title Author(s) Focus 

2002 Guidance for Quality 
Assurance Project Plans for 
Modeling 

U.S. Environmental 
Protection Agency  

Recommendations on how to 
develop a Quality Assurance 
Project Plan (QAPP) for projects 
involving model development or 
application 

2006 Ten Iterative Steps in 
Development and Evaluation 
of Environmental Models 

A. J. Jakeman, R. A. 
Letcher, and J. P. 
Norton 

Widely cited general guidance on 
good practices 

2007 Models in Environmental 
Regulatory Decision Making 

National Academy of 
Sciences 

General guidance on best 
practices in model use in 
complex regulatory settings 

2008 Good Modeling Practice N. Crout et al.; Chapter 
in book on 
Environmental 
Modeling, Software, 
and Decision Support, 
Jakeman et al., Eds. 

General guidance on model 
development, application, and 
testing 

2009 Guidance on the 
Development, Evaluation, 
and Application of 
Environmental Models 

Gaber et al, 2009 (U.S. 
Environmental 
Protection Agency, 
Council for Regulatory 
Environmental 
Modeling) 

General guidance on 
environmental models, 
considering both technical and 
institutional aspects 

2012 Assessing the Reliability of 
Complex Models: 
Mathematical and Statistical 
Foundations of Verification, 
Validation, and Uncertainty 
Quantification 

National Research 
Council 

Report with a technical focus on 
analysis approaches for 
evaluating complex scientific and 
engineering models 

2016 Best Management Practices 
for the Sustainable 
Management of 
Groundwater:  Modeling 

California Department 
of Water Resources  

Guidance for the development 
and use of groundwater and 
surface water models for the 
Sustainable Groundwater 
Management Act (SGMA)  

1.5 Workshops to Elicit Insight from Practitioners 

To elicit information and guidance in the current practice of modeling, five targeted meetings of modeling 
experts in different disciplines were held in February and March 2020. These meetings covered the 
following areas: (1) Hydraulics, Hydrodynamics and Water Quality, (2) Groundwater and Integrated 
Surface Water/Groundwater, (3) Biology and Ecosystems, (4) Surface Watershed Hydrology and Reservoir 
Operations, and (5) Hydro-Economic Modeling and Economic Analysis. An early outline of this protocols 
document was provided to the meeting participants to gather input on their approach to modeling tasks 
in their particular domains. Participants in these workshops are identified in Appendix A. This work is 
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informed by the experience of practitioners captured through these workshops, the general literature 
cited in Table 2, as well as other specialized research studies.  

1.6 Motivation for Current Work 

The goal of this document is to provide guidance and best practices to water stakeholders, decision 
makers, and their technical staff as models are developed and used to solve California’s water and 
environmental problems. This modeling protocols document is not a rigid methodology for modeling, but 
instead serves as a guideline to those who choose to use it. The protocols address new model 
development, structured applications of existing model frameworks, and activities pertaining to the 
management of a model over its life cycle, which can potentially span years to decades. The motivation 
for this work and its utility to the modeling community may be summarized as follows.  

Establishing Credibility:  There is an adage generally attributed to statistician George Box that “All 
models are wrong but some are useful.”2  This simple statement recognizes that natural and human 
systems are sufficiently complex that mathematical representations do not capture their full range of 
behaviors. But as a participant in a model study (such as those in Figure 2), how is one to know which 
models are useful?  At a minimum, we interpret this to mean that a model should be credible and that it 
reproduces processes with a sufficient level of certainty that the model can be trusted by study 
participants as being appropriate for the problem at hand. These modeling protocols should assist model 
users and decision-makers in making informed judgments regarding model credibility. 

Context for Non-Modelers:  These protocols are intended to inform the larger modeling community 
(including model sponsors and stakeholders) so study results can be reviewed in an inclusive and 
comprehensive manner. Users of model results, many of whom are not model specialists, are confronted 
with poorly explained model outputs. The protocols can provide context regarding modeling approaches, 
strengths and limitations, thereby enhancing users’ experiences with the model and promote an 
informed and positive vision of results from the model. Additional investments of resources and time are 
needed for such improved modeling practices, which needs to be communicated to model sponsors and 
others within the modeling community.  

Investment Protection:  With the increasing complexity of water and environmental problems, model 
development and related analyses are a large and continuous investment of resources. Unlike databases 
of field observations, model results have limited shelf lives unless supported by adequate documentation 
and reputation, including source codes and input files. Absent this information, model studies can rarely 
be reused to guide future work. These protocols provide guidance on developing and maintaining such 
supporting material, so the original investments in model development can be preserved and model 
components can be reused more frequently. 

Identification of Emerging Technologies:  New technological developments have changed the practice of 
modeling since the guidance documents in Table 2 were published and changes are anticipated to 
continue. Some technical changes include advances in geospatial data availability, online data and code 
sharing, cloud-based computing, the use of smartphones as computer platforms, machine learning-based 

2 Although this quote is generally attributed to the statistician George Box, no specific citation is available. See discussion at 
https://en.wikipedia.org/wiki/All_models_are_wrong. 
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modeling frameworks, sensor-based data sources and telemetry, and data visualization. The role of these 
technological drivers in changing the practice of modeling is described in these protocols.  

Providing Information in a Local Context:  These protocols and the earlier version from 2000, are tailored 
to the specific modeling issues in California, which are unique because of the state’s climatic variability 
and interconnection of water resources infrastructure. These protocols may also be related to the 
evolving regulatory context in California, such as the adoption of Assembly Bill 1755 (The Open and 
Transparent Water Data Act), which provides specific requirements on the management of water-related 
data, and the adoption of the Sustainable Groundwater Management Act (SGMA). 

Encouraging Adoption of these Protocols:  Many practices described in the following chapters are often 
acknowledged by the modeling community as useful but are not sufficiently implemented because of 
institutional or resource constraints. Our goal in recommending such practices is to highlight a range of 
realistic options for ongoing studies without placing an unreasonable burden on model developers. To 
encourage adoption, we provide three checklists in the Executive Summary that distill key concepts 
presented in this work.  

1.7 Proposed Use of these Protocols 

Models in general, and environmental models in particular, should strike a balance between accessibility 
and comprehensiveness. A model formulation that is more readily understandable or accessible may 
focus on key processes and provide a more simplified system representation while omitting more 
complex relevant drivers. A more comprehensive model formulation may represent many drivers and 
capture system complexity at the expense of greater challenges to implement, test, and explain. Model 
developers have flexibility in how they choose to represent a system but are usually limited by one or 
more of the following constraints: availability of observed data, availability of financial or human 
resources, availability of time, and computational resource requirements. Model development is a 
creative process that seeks to find the “right” or “best” course of action given the above constraints. 
However, given that unique “right” system representation rarely (if ever) exists, considerable subjectivity 
in the selection of a modeling approach exists. For these reasons, to determine if the modeled 
representation of a problem is correct and credible, additional testing and/or monitoring and field 
verification may need to be performed.  

In this context, this document provides guidance for modelers to support the execution of a model study 
through its various steps, such as:  selecting a model, fulfilling the requirements of credibility, engaging 
stakeholders, performing peer review, creating suitable documentation, and communicating with 
interested parties. These protocols may also be used by model sponsors (who direct and fund model 
studies), new modelers and academic research students, and stakeholders who may be asked to base 
decisions on model results, and who want to gain a broader perspective on the science and craft of 
modeling. 

In providing this guidance, we also note practical observations and constraints—typically time, personnel 
or other resource constraints—that prevent these practices from being applied in all circumstances. Thus, 
these protocols are not intended to be specific or prescriptive requirements, but to describe best 
practices that are expected to benefit the broader community of users shown in Figure 2. Some modeling 
domains may have customary practices or standards that can be used in tandem with these protocols, or 
they may take precedence over the protocols presented here. It is hoped that these protocols will provide 
clear direction on planning a modeling study from initial question to completion, although decisions on 
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what specific elements will be included, will always be determined on a case-by-case basis. More 
importantly, these steps should be as transparent as possible, so non-modelers can also actively engage 
in the process, and help them understand and/or decide what is most appropriate for their particular 
study. These protocols refer occasionally to specific model frameworks, but are intended to apply broadly 
across frameworks and disciplines relevant to California’s water and environmental resources. For 
reference, a link to a specific online inventory of model frameworks is represented in Appendix B.  

The modeling protocols proceed sequentially—similar to how a study would be conducted—in the 
chapters that follow. Chapter 2 classifies different types of modeling activities, where different 
components of these protocols may be more suited to specific categories. Chapter 3 describes a variety 
of preliminary analyses that typically precede the actual exercise of modeling. Chapter 4 lists steps 
involved in a modeling study because this is where most computations and interpretations are 
performed. Chapter 5 presents steps in typical model applications. Chapter 6 focuses on communication 
and documentation of model results. Chapter 7 describes the need for enhanced collaboration 
mechanisms for the modeling community, again spanning broad topics that go beyond individual studies. 
Chapter 8 discusses emerging technologies expected to influence modeling in coming years. Chapter 9 
highlights issues related to long-term management of models that go beyond individual studies to the 
management of frameworks over long time horizons. Chapter 10 discusses next steps in the use and 
communication of these protocols, focusing on the California water and environmental modeling 
community.  

The key ideas in the above chapters are summarized in a set of three checklists described in the Executive 
Summary. These checklists include questions, with either yes/no or narrative answers that can be used to 
characterize a modeling effort at three points in time:  

1. At the inception of a modeling study,  

2. Following completion of a modeling study, and  

3. Over the long-term for managing a model framework that is utilized for multiple studies.  

These checklists will aid communication among the model user community and will highlight important 
elements that are described in these protocols.  



12 

2 Modeling Study Types 
Modeling study tools and problems can be classified into three categories. In the first category, models 
are developed and used for problems where the science is reasonably mature and where general 
agreement exists on the mathematical formulations of the key modeling processes. In the second 
category, the study and problem is characterized by an evolving science, and model development and 
application are part of the scientific investigation. In the third category, the problem requires 
development and use of multiple models representing different interacting processes – thereby 
highlighting additional challenges related to model integration, data consistency and exchange, project 
scheduling, and interpretation of results. These modeling study types are described below, because they 
have a bearing on the appropriateness of certain protocol components presented in the subsequent 
chapters.  

2.1 Modeling with Established Frameworks 

For modeling study with well-defined basic theoretical principles, mathematical representations, and 
computer implementations in place, the approach to a model study can have a linear progression of steps 
(Figure 3). The main steps use observed or collected data from the field or reported data from other 
observations or methods (e.g., remote sensing) to configure and calibrate the model; apply to various 
scenarios; and report the results. Model results are compared against field observations or reported data 
and can be subjected to a variety of tests to evaluate performance. To provide additional specificity for 
these modeling best practices, we separate the evaluation step into two phases: an initial evaluation that 
is expected to be applied for all model applications and additional evaluation such as sensitivity analysis
and uncertainty analysis. The latter phase requires more resources and time that are better suited for 
larger and more consequential exercises.  

Many modeling studies follow the approach in Figure 3, where a modeling framework (examples are in 
Appendix B) is customized for a specific geography. Despite the linear progression of steps illustrated in 
Figure 3, an opportunity for revision should be considered as new insights appear along the progression 
of steps in the figure. Although the basic theory for this class of models is well-established, there are 
many areas that are the focus of improved performance and research. These include collection of more 
spatially and temporally resolved field data to better configure the model; improving the calibration of 
the model to better fit observations; more efficient model run times; improved visualization and 
interpretation of results; and more sophisticated evaluation of performance. Over time, due to the level 
of scrutiny and the detailed questions posed, models in this category, while using the same theoretical 
equations to represent the underlying processes, are becoming more spatially and temporally detailed, 
with greater computational requirements.  

2.2 Modeling where Science is Evolving 

The scientific understanding for many problems is evolving. Figure 4 diagrams the steps that may be 
taken to analyze such a problem. The primary difference between an evolving problem and a well-defined 
problem is that model structure, data needs, or even outputs are less certain at study inception. 
Therefore, study focus is on collecting more data (typically new types of indicators to improve scientific 
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understanding) and developing conceptual frameworks to explain relevant processes and drivers for a 
variable of interest. A conceptual framework may be thought of as a compact graphical representation of 
the key processes of interest in a modeling study. A conceptual framework may be converted to a 
quantitative model structure, thereby formally describing how inputs and outputs are related and then 
implemented in computer code. Such models may then be calibrated and evaluated in a manner 
consistent with more mature models. The modeling protocols proposed in this work apply to both newly-
defined and well-established modeling processes. The distinction between Figure 3 and Figure 4 is made 
not to downplay the role of evaluating and testing in models with evolving science, but rather to point out 
that the primary attention may often be focused on improving the basic understanding and 
representation of the processes of interest. 

Figure 3. Generalized modeling steps for a topic with well-developed theoretical frameworks and computer 
implementation. Some typical loop-backs are shown, although in principle any step can loop back to a prior step. 

Figure 4. Generalized modeling steps for a topic where the scientific understanding is still evolving. Some typical 
loop-backs are shown, although in principle any step can loop back to a prior step. 

2.3 Modeling with Multiple Frameworks or Across Disciplinary Boundaries 

A growing trend in environmental modeling is to use multiple models where impacts may span the 
domain of more than one model (Delta Stewardship Council, 2020). This may employ two or more models 
sequentially, or through a more iterative exchange between models. The former approach is common 
and has been utilized in several major statewide efforts (Delta Stewardship Council, 2020). The use of 
multiple models raises additional questions of modeling protocols, including the consideration of both 
technical and institutional challenges. Technical issues include computational and scientific challenges 
related to integration and are associated with model compatibility, data exchange and management, 
accessibility of models, overall complexity of integrated models, propagation of uncertainty across 
integrated models, and the overall limitations in model testing. Institutional challenges are primarily 
concerned with the human side of modeling and relate to the overall setting in which modeling occurs, 
the expertise needed to develop integrated models, the funding needs, and the engagement of 
stakeholders. 
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3 Preliminary Analyses 
The early steps of a modeling study set the stage for a scientifically strong and defensible project and 
should not be rushed. After identifying the problem or question, the next step is to confirm whether a 
model is, in fact, useful to address the problem. Subsequently, study participants determine what type of 
model would be most useful, and whether an existing model can be used for this purpose or whether a 
new model should be developed. The level of model complexity chosen will be informed by budget and 
schedule, the type and amount of available data, and the available expertise. These preliminary steps are 
described below.  

3.1 Define the Question(s) 

At the inception of a study, the purpose of a modeling exercise should be clearly defined. While this 
practice appears obvious, the modeling purpose is often not explicitly specified up-front among modelers 
and stakeholders. A clear specification of the purpose in the form of goals and objectives is especially 
needed for modeling efforts for planning, management, and decision support, and not those focused on 
open-ended research. Goals of model development are intended to establish the long-term vision of 
model development to most efficiently and best serve the needs of the project. It is imperative to 
establish the long-term goals, as many models are developed for long shelf lives, and can span multiple 
studies and projects over time. Objectives of the model development can be more specific for the project 
or study at hand, and need to be aligned with the long-term goals. Usually, the stated goals and 
objectives should be developed in a transparent, open, and collaborative environment with stakeholders, 
including their technical, policy, and legal representatives. This would lead to a broad scope of work, 
including what processes will and will not be modeled, what data will be needed, what form the results 
will take, and what the expected accuracy and uncertainty will be. Importantly, a modeler needs to 
understand the stakeholders’ viewpoint of how the model results will be used. In some instances, where 
a problem is addressable with an existing model framework, the model study purpose can be defined 
with greater clarity than when a completely new model needs to be created. The more specifics that are 
outlined early, the more efficiently the modeling exercise will progress. When elements of the modeling 
scope are not well-defined up-front and are later selected by decision-makers based on the results 
obtained, the result can be a less-than-optimal use of the modeling effort. 

A National Research Council (NRC) evaluation on modeling practices for regulatory application (NRC, 
2007) proposed the following relevant and valuable suggestions to help define the model purpose. Not all 
of these questions may apply to all modeling efforts, but a reasonable subset can be selected for most 
modeling studies: 

 At what temporal and spatial scales is the model to be applied?  

 Who will review and benefit by model output, and what constraints does that imply for model 
application once developed? What is the expertise of proposed users of model output?   

 What input data must the model users provide? How can these data be obtained (results from other 
models or direct measurements)? 

 What sources of data are available to support model calibration and evaluation? 
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 What are the basic outputs needed to support the decision made by policy makers and/or support 
the regulatory questions? What additional outputs might be useful to enhance model transparency 
and flexibility? 

 What reliability (defined as the degree the 
model results can be depended) is required? 

 What evaluation criteria should be applied to 
determine the applicability of the model? 

The exercise to define the model’s purpose should 
be formally and clearly documented, a common 
engineering practice across many other disciplines 
(e.g., civil, environmental, mechanical) in their 
design endeavors. That documentation can then 
be revisited and revised as the modeling effort 
evolves. 

3.2 Translate Question(s) into Modeling Analysis 

Once a question has been defined, the next step is to lay out an appropriate modeling approach. For 
questions where the underlying mechanistic processes are well understood (Section 2.1), one or more 
established frameworks will be evaluated for use, based on cost, availability, and familiarity of the model 
users with the framework. Such evaluation will also need to consider the type and amount of data that 
will be needed to conduct a reasonable analysis. The types of models available represent the range of 
study domains in environmental and water resource applications.  

3.2.1 Conceptual Frameworks  

For questions where the science is evolving or highly site-specific (Section 2.2), several additional steps 
need to be addressed. No established modeling framework may exist, or additional 
modification/customization is required to allow an existing framework to address the relevant question. 
In the former case, a new model may need to be developed, while in the latter case, additional 
characterization should be performed before an existing model is adapted. Biological and economic 
problems often fall in the former category, while water quality and ecosystem-level problems often fall in 
the latter category (Delta Stewardship Council, 2020). A key step in many such models is the development 
of a conceptual framework that is a precursor to a more detailed quantitative representation. 

Conceptual frameworks, as used in ecological and biological analyses, are abstractions of reality, ranging 
from a schematic representation of processes (Figure 5) to a more detailed description of the state of the 
science related to a specific environmental concern. When developing new models, creating a conceptual 
framework, even a simple schematic representation, is recommended as a first step. A conceptual 
framework is a useful tool that helps explain the system to be modeled and further guides model 
development, experimentation, and evaluation. Moreover, conceptual frameworks are effective for 
communicating model information with stakeholders, particularly when the conceptual framework 
represents processes graphically and highlights key quantitative information. Finally, a conceptual 
framework creates a point of reference for model developers to revisit when considering changes to the 
model. 

Practical Observations. Questions often arise from 
stakeholders or model sponsors in the later phases 
of a modeling exercise that were not intended to 
be part of the modeling study. To the extent 
possible, transparency in the goals of the study will 
reduce such queries to the benefit of all 
participants. This is especially true for studies that 
apply established frameworks, which are also likely 
to be time and resource constrained efforts. 
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Figure 5. Conceptual representation of the uptake of selenium, a bioaccumulative element, in ecosystems from 
water to biota. Kd represents the partition coefficient between dissolved and particulate phases and TTF 

represents the Trophic Transfer Factor (Source: Project on Linking Selenium Sources to Ecosystems:  Modeling; 
https://www.usgs.gov/mission-areas/water-resources/science/linking-selenium-sources-ecosystems-modeling). 
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In addition to enhancing communication, under certain circumstances, a well-designed conceptual 
framework may accommodate formal hypothesis-testing. A good conceptual framework may lead to the 
early realization that the development of a quantitative system model would be premature due to data 
and knowledge gaps. 

In some instances, conceptual frameworks play a role following data synthesis and after completion of a 
modeling study. Typically, the initial conceptual framework would be refined over the course of model 
application, and more quantitative information provided in the revised conceptual framework. Such a 
model can serve as a basis for further communication with stakeholders. Graphical representation of 
modeled processes, with key quantitative information being highlighted when available, is a significant 
aid to communicating with stakeholders. 

Conceptual frameworks have been developed and 
documented as stand-alone tools, combining graphical 
representations and narrative syntheses of available 
information. Examples of conceptual framework 
documentation include a model for Delta Smelt 
(Interagency Ecological Program, 2015) and a 
framework for nutrients in the Central Valley and Delta 
(Tetra Tech, 2006). These detailed conceptual 
frameworks are applicable when a large amount of 
information exists for a problem of interest and can 
provide a strong foundation for model development. 

A potential pitfall for conceptual frameworks is that they may be overly abstract to sufficiently guide the 
implementation of quantitative models. This problem is particularly relevant for large, complex processes 
and/or in areas when an integrated model is being considered. As a countermeasure, a conceptual 
framework should be re-evaluated and revised as the quantitative model is being developed. 

Other potential pitfalls of conceptual frameworks are that they may be too complicated to allow 
prioritization of key processes, are overly difficult to understand, or are overly difficult to communicate to 
the modeling team and to stakeholders. In developing conceptual frameworks, comprehensive 
understanding of the system to be modeled and professional judgment are needed to identify and 
prioritize key processes and mechanisms, and assumptions should be clearly documented. 

3.2.2 Types of model representation 

A variety of modeling frameworks and associated tools for water resources problems are in common use 
in California. A set of these models is listed in Appendix B, with details on each model provided in a 
supporting online inventory. The primary modeling focus areas are listed below.  

3.2.2.1 Surface water hydrology and hydrodynamics models 

Surface water hydrology models simulate flow conditions in natural and developed streams and rivers, 
associated floodplains, and in man-made channels. Hydrology models can focus on peak flows and 
simulate the flood flow conditions, or may focus on low flow conditions and runoff and percolation during 
low flow regime. Some hydrologic models can also be applied to include reservoirs, estuaries, and coastal 
waters. Watershed models simulate the hydrologic processes involving simulation of runoff and 

Practical Observations. Conceptual 
frameworks are useful to engage a variety 
of participants early in the development 
process, before significant investments 
have been made in numerical model 
development. Their use is widespread in 
areas, typically related to water quality or 
ecosystem processes, where the scientific 
understanding is still evolving. 
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percolation from rainfall and/or snowmelt, which is a function of land slope, land use and possibly crops 
cover, and soil conditions. Hydrodyamic models represent fluid dynamical processes in water bodies and 
are based on solutions of differential equations for mass balance and continuity. These models can be 
discretized in one, two, and three spatial dimensions, depending on the application and the need for 
spatial detail. 

3.2.2.2 Water Quality Models 

Water quality models quantify the movement and concentration of natural constituents and 
contaminants in lakes, streams, estuaries, and marine environments3. Water quality models may be used 
to assess water quality conditions and causes of impairment, predict how surface waters will respond to 
changes in their watersheds and the environment (i.e., from climate change), develop regulatory 
guidance (Total Maximum Daily Loads or TMDLs), or simulate benefits of new surface water protection 
policies. Water quality constituents can be categorized as physical, organic, inorganic, chemical, and 
biological. Pollutants may be classified by specific forms, such as biochemical oxygen demand, nitrogen, 
phosphorus, bacteria, or specific toxic substances. Unstable pollutants, which increase or decay with 
time, are termed nonconservative.  

3.2.2.3 Groundwater Models 

Groundwater flow models are used to simulate the rate and direction of water movement through the 
subsurface environment. Some groundwater models also simulate water movement through the 
integrated land surface, groundwater, and stream and river systems. In this case, the modeling 
environment provides for flow of water through all processes, and mathematical equations govern the 
flow process through each system and among the systems in an integrated framework. Additionally, 
groundwater models incorporate mathematical representations of some or all of the following processes:  
movement of water and other fluids through saturated or unsaturated porous media or fractured rock, 
transport of water-soluble constituents, transport of constituents that partition between water, air, and 
soil, transport of constituents subject to retardation in their movement due to sorption and desorption 
with soil particles (clay and organic material), and transformation of contaminants by chemical, biological, 
and physical processes. These models can also simulate the drainage and compaction of aquifer layers 
that are responsible for land subsidence. Examples of water quality processes simulated are the 
movement of point source of contaminants such as from an oil spill or underground storage tank, or from 
non-point sources of contaminants, such as nitrate or total dissolved solids from long-term application of 
fertilizers on agricultural fields. 

3.2.2.4 Operations Models 

Operations models involve the flow and water quantity aspects of reservoir system operations and water 
resources planning. The two types of operations models are: (i) simulation models, where the operation 
of the reservoirs and river systems are simulated with fixed rules and in a sequential manner over the 
single or multi-reservoir systems and the river system, and (ii) optimization models, which use stochastic 
and optimization rules to operate the reservoirs and river system to optimize an objective function (e.g., 
maximize downstream deliveries), subject to a set of constraints (e.g., meet minimum flow requirements 
during drought conditions).  

3 While groundwater models may simulate water quality processes, groundwater quality models (i.e., transport models) are 
described within the groundwater model category in this chapter and in Appendix B.  
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3.2.2.5 Biological Models 

Biological models include representation of key ecosystem processes, such as cycling of major elements 
like carbon and nutrients, as well as representation of organism behavior in response to environmental 
drivers such as invasive species or endangered species. Key model types are described below, and specific 
models in use in California are presented in Appendix B. 

Food web models, one category of biological models, link organisms by their feeding relationships. For 
simplicity, species are often placed in functional groups. Increasingly, tropic relationships are being 
inferred through stable-isotope analysis. In the absence of data from field studies, food webs are 
constructed from lab studies and literature reviews. Because large-scale food webs are inherently 
complex, there is a high degree of uncertainty in food web data. A dynamic food web model requires an 
understanding of how changes in the physical properties of the system affect the topology and 
magnitude of energy flows through the food web. 

Another category of biological models are fish models, where statistical relationships between operations 
and fish parameters are often incorporated rather than differentiating the different mechanistic 
pathways that water operations may have on fish. One key challenge in using physical data in fish models 
is finding the right level of abstraction. In nature, fish react to instantaneous changes in velocity, salinity, 
temperature, and turbidity. For many models, though, it is not practical to run the model at a sub-hourly 
timestep even if physical data are available at that timescale. A necessary and useful simplification is to 
treat flow as a master variable that affects the underlying mechanisms influencing fish behavior and 
survival.  

3.2.2.6 Economic Models 

Models focused on economics use a variety of datasets to link economic outcomes to agricultural 
practices, availability of land and water, and changes therein. The major components are the amount of 
production, the economic value of production, and cost of resources. Key inputs to economic agricultural 
models are water use data and crop irrigation method data. Cost and return studies provide a breakdown 
of costs associated with labor, materials, equipment, and contract services to a high level of detail. The 
economic synopsis provides critical information on the associated cost of production for a typical acre of 
commodity as well as expected returns on sales for the same acre. Typically, these studies are used by 
operators to guide decisions, estimate potential returns, and prepare budgets; however, they also 
provide key data in the development of economic models. 

3.2.2.7 Integrated Models 

Models may also be integrated across different disciplines and geographic domains. A review of 
challenges and opportunities in the use integrated models, and their application to solving problems in 
the Sacramento-San Joaquin Delta is presented in Delta Stewardship Council (2020). 

3.3 Identify Available Information 

Observed data, a fundamental part of sound modeling development and application, are critical in 
defining initial conditions, boundary conditions, and model input parameters. In most instances, 
environmental models contain parameters that are defined independently from experiments or expert 
knowledge or are adjusted as part of the model setup, as well as for model testing and improvement over 
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time. Parameters that cannot be determined independent of the model (e.g., a reaction rate for a 
chemical process within a water body or a roughness coefficient for a stream bed) are estimated through 
the process of model calibration (described below), which involves tuning the parameters to obtain a 
good fit between the model and observed data. Thus, data that are credibly measured, have good quality, 
have been reviewed for potential erroneous values, and are well documented (metadata, including any 
identified limitations) are an essential part of the modeling process. California Assembly Bill 1755 (Open 
and Transparent Water Data Act, AB 1755) is a major step toward standardizing data resources available 
to modelers. The bill requires California state agencies to make data publicly available and to develop 
protocols for data sharing, documentation, quality control, and promotion of open-source platforms and 
decision support tools related to water data. Once fully implemented, AB 1755 may provide observed 
data in a form that is suitable for model studies (i.e., for calibration and testing). Additionally, the 
California Water Quality Monitoring Council has requirements for quality assurance program plans that 
should be used in collecting water quality data in a monitoring program.4

Modelers generally prepare data sets for model calibration and testing, pulling from a variety of available 
data sources. Data preparation typically involves some form of compilation across different sources, 
conversion to common units, and quality control to remove known outliers, all of which can be time 
consuming, and more importantly, have a bearing on the model calibration. Modelers may obtain 
different model calibration results depending on the quantity and quality of data used and the specific 
process steps used to prepare model input data, even when utilizing the same model framework. In some 
cases, models may use processed values (e.g., loads derived from pollutant concentrations, or salinity 
isohalines from point-based values) rather than directly observed data. The creation of standardized input 
datasets — whether using directly observed data or some processed form — is recommended, especially 
when many different users are expected to be involved in parallel studies. 

Standardized datasets should be thoroughly described via metadata, corroborated with explicit 
references, and prepared for analysis with a reproducible and documented workflow. Data 
documentation is especially important because data will last much longer than its use in any single 
modeling study. Use of standardized datasets limits the time lost due to errors in model runs arising from 
incorrect input data. Preparation of standardized datasets involves decisions about missing values and 
specifications of data types (e.g., date, integer, or string). One of the central challenges of preparing 
standardized datasets is anticipating the possible ways that a dataset could contain inconsistencies. For 
example, does the data provider use letter codes, dashes, or numerical codes (e.g., 999) in place of 
missing data causing potential type mismatches? Does the test dataset include all the possible 
permutations of codes produced by a data provider? Does the data quality control process check for the 
distribution of the data for early recognition of possible changes in data structure?  Ideally, these 
decisions should be documented for future users. 

Typically, such standardized datasets are not easily available and may not be part of raw data sources. 
Therefore, a related recommendation is the creation of a searchable database or similar data repository 
of such standardized datasets where a user can identify appropriate information for use in a modeling 
study. 

4 Available at https://www.mywaterquality.ca.gov/monitoring_council/index2.html 
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3.4 Model Selection 

After the consideration of type of model representation needed (as discussed above in Section 3.2.2), 
model selection requires consideration of the modeling objective and model complexity. Other 
considerations include whether an off-the-shelf model can be used or if a new model needs to be 
constructed, if a public domain or proprietary model is appropriate, the need for code verification, and if 
multiple models are to be used how they will be integrated. Each of these topics is addressed below. 

3.4.1 Understanding the Role of Accuracy Versus Precision 

Accuracy in the context of modeling refers to 
how close modeled values are to the true or 
observed values. Precision refers to how close 
model predictions of the same item are to each 
other. Precision is independent of accuracy as 
shown in Figure 6. While the ideal in modeling is 
to be both accurate and precise, this is rarely achieved. A more practical goal is to be accurate within a 
reasonable range, i.e., to be approximately correct. A precise model that is not accurate is not particularly 
useful. To the extent possible, model selection should carefully consider the level of accuracy and 
precision that can be achieved.  

3.4.2 What Level of Complexity is Needed? 

Model complexity describes the spatial and temporal resolution of the model and the variation of 
parameters allowed as well as the number of processes incorporated into the model (or, parameter 
complexity and process complexity). An appropriate level of model complexity is a function of multiple 
factors including, but not limited to, objectives of the modeling exercise, knowledge of the system, and 
data availability. A useful rule of thumb for deciding on the level of complexity a priori is that the model 
outcomes should be testable by observed data spatially and temporally. For example, when choosing 
between a simple lumped parameter model and a more sophisticated distributed parameter model, a 
model developer should be able to 1) support the added complexity by more detailed input data available 
for the distributed model (e.g., distributed measurement of related properties), and 2) test whether this 
added complexity is providing an additional benefit by comparing the simulations with new data. Complex 
models may provide a better fit at the cost of overfitting and loss of generalization, described further 
below. 

“Far better an approximate answer to the right 
question, which is often vague, than an exact 
answer to the wrong question, which can always 
be made precise” (Tukey, 1962). 



3. Preliminary Analyses CWEMF Modeling Protocols 

22 SS

Figure 6. A schematic representation of the concepts of accuracy and precision. The center of each circle is the 
desired target. 

The inability to identify a single representative model is a clear cost of excessive model complexity. 
Complex models often have a larger number of parameters, and under these conditions, different 
combinations of parameter values can lead to similar model results when compared to observed data 
(e.g., runoff at the catchment outlet or water level in groundwater bores). Such a result implies that the 
observations are insufficient to properly test the model structure or parameter values. Furthermore, even 
if a model appears to accurately simulate a particular response, this result does not necessarily indicate 
that other model predictions are correct. For example, although a rainfall-runoff model may provide good 
fits to streamflow at a catchment outlet, it may not necessarily provide accurate streamflow estimates at 
internal gauging stations or correct spatial patterns of saturation deficit. This issue has been clearly 
identified by many researchers (Grayson and Blöschl, 2001; Tasdighi et al., 2018), yet it is commonly 
ignored by model users. This issue is often referred to as “equifinality” or “non-uniqueness” in the 
literature and is a subject of continuing discussion (Beven, 2001). 

Figure 7 illustrates the conceptual relationship between model complexity, data availability, and 
predictive performance. The term “data availability” refers to both the amount and quality of the data in 
terms of its use for model testing. Within the context of hydrology, access to spatial patterns of surface 
runoff data is considered “high” availability while scarce streamflow measurements as aggregated runoff 
implies “low” availability. The term “model complexity” means detail of process representation and 
spatial/temporal detail. Complex models include more processes and report values at greater spatial and 
temporal density. As illustrated in Figure 7, for a given data availability, there is an optimum level of 
model complexity giving the highest predictive performance; additional complexity leads to concerns with 
a larger number of uncertain inputs. Another way of looking at this is through the concept of overfitting, 
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shown schematically in Figure 8. A model may be too simple for the data or may overfit the data, the 
challenge of model selection is to find the right level of complexity. 

Figure 7. The conceptual relationship between model complexity, data availability, and performance 
(modified from concepts in Grayson and Blöschl, 2001). 

Figure 8. A schematic representation of model fitting (blue line) for observed data (red points). The left 
plot shows a model that is too simple for the data, and the right plot suggests a model overfitting the 

data. The middle plot is a conceptual representation of the “right” level of complexity. 

For a given model complexity, greater data availability usually results in better predictive performance up 
to a point, beyond which the data does not provide more useful information to improve the model with 
that level of complexity. Under these conditions, a user may wish to consider a more complex model to 
better exploit the information from the available data. 



3. Preliminary Analyses CWEMF Modeling Protocols 

24 SS

3.4.3 Off the Shelf vs. Building a New Model 

The following questions should be considered when assessing the need for a new model (i.e., starting 
from new code) versus using an existing model (USEPA, 2002): 

 For what specific tasks will the model be used in the given application? 

 What data will be collected or obtained to characterize the application site and to develop a site 
conceptual framework that will be compared with existing models? What is the needed spatial and 
temporal scale of the model inputs? 

 What model outputs are needed? What is the spatial and temporal scale needed for the outputs? 

 What levels of uncertainty are acceptable in model outputs? 

 What are the strengths and weaknesses of existing models? 

 If an existing model is available, are its parameter default values, input data, boundary conditions, 
and underlying assumptions acceptable? 

 Is the existing model software compatible with the modeler’s hardware/software configuration 
requirements for the new application? 

 Are any improvements in the existing model’s computer code operating characteristics (e.g., run 
time) needed? 

 Do the quality and documentation associated with the existing model meet the project-specific 
requirements? 

As noted in the context of schedule and resource considerations, new model development is generally 
expected to be far more expensive than the use of a prior framework. However, based on the above 
questions, there will always be specific project needs that require the creation of new models.   

Where the task requires use of an existing model, more than one model may be available for use. In this 
case, the decision process should include consideration of the model life cycle (see Chapter 8). Where the 
task requires the development of a new model, the modeler has some discretion on the level of process 
complexity to be used. In both cases (existing or new model), the modeler has the flexibility to determine 
the level of spatial and temporal detail incorporated. As an example, a dynamic model may compute and 
report values at timesteps of minutes, days, or longer. A spatially detailed model may contain a grid with 
sizes ranging from square meters to hundreds of square kilometers. 

3.4.4 Open Source, Public Domain and Proprietary Models 

Environmental models may be open source, public domain, or proprietary. Open source models are those 
where the underlying source code of the model is available for anyone to examine and modify, potentially 
creating a new executable version of the model. Public-domain models are those where the executable 
version of a model is freely available, although the source code may not necessarily be available. Finally, 
proprietary models are owned by a non-public entity and there is usually a cost for leasing and applying 
the model. 

Each approach has strengths and weaknesses as outlined below: 

 Open-source models: These models are free to use and their source codes can be modified by 
anyone. In many cases, well maintained and documented open-source models may be the basis for 
major modeling studies, as is the case with three water and environmental models frequently 
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applied in California: DSM2, IWFM, and CalSim. Open-source models are also suitable for new 
scientific applications, where there may be a need to add new process information to an existing 
model by making changes at the computer code level. In most cases, considerable user expertise is 
needed to make meaningful changes to complex environmental models. Where a community of 
modeling experts exists, open-source models are an effective means for continued development. In 
general, however, the ability of any user to change the model can create a concern with version 
control, in that specific outcomes may be a consequence of the particular variant of the model being 
used. Furthermore, for open-source models to be sustained, there is a requirement for funding of 
staff for development; often this is done through government or academic organizations. 

 Public-domain models: These are free to use, although there may be limits to what can be changed 
in a published form of the model framework. The costs of development are borne by the sponsoring 
organization. In some cases, sponsoring agencies have provided resources to make their public-
domain models easy to use in a manner similar to some proprietary models. Model credibility is 
generally a function of the credibility of the sponsoring organization. These models are suitable for 
studies with large teams of modelers, and as educational tools. 

 Proprietary models: Fees for use may be significant, and thus limit who can directly use the model. 
Fees provide continuing resources for the developing organization to protect the intellectual 
properties and improve the code and the user-friendliness of the model. Where a model has uses in 
many geographic domains, the development costs may be spread over a larger user base. These 
models are suitable for studies where available model features adequately represent the modeling 
purpose, and an off-the-shelf product can be used. This general description applies to proprietary 
model frameworks and proprietary model applications.  

In California, a mix of open source, public domain and proprietary models has evolved in response to 
several factors, including: the history of development in different domains, sponsoring agency 
involvement, and resources for new models. As with other elements described in this chapter, the 
ownership of the model can in some cases influence the best practices actions that can be applied. 

3.4.5 Code Verification 

Code verification is the process of determining how accurately a computer program correctly solves the 
equations of a mathematical model. It is assumed that most established model frameworks in common 
use will have undergone this test and, thus, this task is appropriate when a new code or module is being 
developed for a specific application. Code verification also provides an opportunity to evaluate or 
reevaluate the efficiency of the code, which may enable its use for situations that require multiple model 
runs, such as for sensitivity analysis. Typically, computer codes are verified with well-documented data 
sets and the results of published and documented analytical or semi-analytical models. Within many 
large-scale computational models, opportunities exist to perform verification studies that reflect the 
hierarchy or collection of these models. For example, code verification can successfully employ “unit 
tests” that assess whether the fundamental software building blocks of a given code correctly execute 
their intended algorithms. Documentation of code verification, especially for newer models or for models 
where modifications are being made to established codes, is an important part of establishing model 
robustness. 
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3.4.6 Integration Between Models 

Integrated modeling is an approach where two or more models, typically with different areas of focus, are 
used together in an analysis. Integration of more than one physical process can also occur internally 
under the umbrella of a single model. Integrated modeling can be applied to support analyses that cross 
different disciplinary domains and are often needed to understand the effects of new regulations or 
major new infrastructure. Integrated modeling is widely used in the physical, chemical, and biological 
domains, with growing and emerging opportunities in the economic and social science domains, 
respectively (Delta Stewardship Council, 2020). Typical examples where such modeling may be used 
include: long-term planning, short-term forecasting, regulatory decision-making, planning for changes to 
or developing new infrastructure, and even for developing a scientific understanding of a complex 
system. Different approaches are used for integration, ranging from simple file exchange across pre-
existing models (with minimal code modification required) to the development of entirely new model 
codes.  

3.5 Schedule and Resource Considerations 

While the discussion of schedule and resource considerations is presented here as one step of the 
preliminary analyses, in reality, schedule and resource considerations must be considered throughout the 
entirety of the modeling process. Often, the model study sponsor provides the modeling team with a 
budget and an overall schedule and asks the team to come up with a more detailed schedule that factors 
in the intricacies of the modeling work. Although it is challenging to provide guidance on the actual time 
needed for a particular modeling study, key elements can be highlighted for consideration.  

As noted in the Introduction, time allocations are important components in the development of a credible 
modeling study and may not be sufficiently performed without sufficient time being allotted. For model 
applications with established frameworks (Section 2.1), it is important to utilize not more than 50 percent 
of the time available in performing the first complete set of model runs. Of the remaining 50 percent, 
approximately half should be allocated for reviews, re-running the model, and stakeholder interaction, 
and the remaining half should be allocated for communication, documentation and wrap up of the study. 
While the exact percentages will vary, of course, in the experience of the authors, too much time is spent 
in preparing the first set of model runs while other aspects are shortchanged. Sufficient time is needed 
for modelers to adequately respond to initial review by others and to the stakeholders’ issues, questions, 
and concerns. Additional details on these protocol components are provided in Chapter 4.  

For model studies where the science is evolving (Section 2.2), the time allocated for modeling may be on 
the order of a few years even when using less-complex models. Many of these models are developed in 
research and academic settings, where multi-year time frames are typical. This allows time for 
development and refinement of conceptual frameworks, and even supporting data collection, creation 
and testing of new codes, and developing and implementing applications. These modeling studies should 
also consider adding review processes as described above, which adds further time to the effort. 
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Resource requirements vary depending on the model 
study setting. Although computational and software 
resources should be included in the budget, in most 
cases the primary resource requirement is for staff 
support, whether staff in an agency or outside 
consultants. In the experience of the authors, 
modeling studies often cost more and take more time 
than envisioned, with more challenges in a consultant 
setting with defined goals and fixed budgets than for 
in-house agency staff, due to the level of effort being unknown ahead of time. Schedule and possibly cost 
over-runs are related to the cycles of revision and review that are commonplace in model studies, and are 
likely caused by an over-optimistic estimate of the time needed for these phases. However, problem 
complexity is also a reason for development times and resources exceeding initial estimates. 

If an established modeling framework exists and is applicable to the modeling question to be addressed, 
its use will likely be more cost- and time-efficient than developing a new model framework. This is usually 
true even when the model framework is proprietary and involves significant license fees for its use. This is 
because the development of any new model is generally an uncertain endeavor and can end up costing 
far more than initial optimistic estimates. New model development should be considered as an option, 
but only when existing models cannot fully address the questions being asked.  

Practical Observations. Modeling, as with 
any complex intellectual endeavor, almost 
always takes more resources and time than 
originally envisioned. Advances in 
computing speed over the past two 
decades appear to have had minimal effect 
on the time needed for conducting credible 
model studies. 
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4 Framing the Modeling Study 
After the problem or question is defined and the modeling framework has been selected, the modeling 
study can be initiated. Model setup steps such as selection of boundary and initial conditions, time step, 
and physical geographic layout should be carefully considered to accommodate possible future scenarios. 
Input data should be selected to ensure that model results are not later called into question due to 
improper data quality assurance. Steps in the modeling analysis such as the model calibration, model 
testing or evaluation (also termed validation), and model sensitivity should be clearly documented as they 
are conducted, along with record-keeping of assumptions and limitations, so that these elements of the 
modeling study will later become part of the model application documentation.  

4.1 Frame the Analysis 

Framing of the analysis refers to the setting of the geographic extent, spatial scale, and dimensionality of 
the model, configuring the model to represent the background conditions, and defining the boundary 
conditions to focus on the problem at hand. Additional details on these aspects of the model setup are 
provided below.  

4.1.1 Boundary and Initial Conditions 

For most of the model types described above, the system is composed of the elements shown in Figure 9. 
The model is driven by initial and boundary conditions of the variables of interest, where the initial 
conditions represent the values at the beginning of the model run and the boundary conditions represent 
values at the edge of the spatial extent to be modeled. Specification of initial and boundary values 
influence the time evolution and spatial scale of model calculations. The model configuration is used to 
define the background setting over which the calculation is being performed, such as the bathymetry of a 
water body or the depth of an aquifer. Within the model, there are usually some pre-defined or 
adjustable parameters. Pre-defined parameters refer to values that are independently measured or 
known, such as the properties of water density as a function of temperature. Adjustable parameters are 
typically those that cannot be measured directly and are derived by fitting the model to observed data (a 
process called calibration). The model may calculate values (over time or space) based on the equations, 
configuration, and boundary conditions, termed the internal state variables. A subset of or an interpreted 
summary of the state variables may be presented as outputs; outputs may be presented in tabular form 
or in various graphical forms. Best practices for modeling are related to each of these elements. 
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Figure 9. Major elements in model systems. 

4.1.2 Geographic Scope 

The geographic focus of a model will usually be determined by the question being asked, although there 
will be a need to consider upstream effects that can influence outcomes in the focus area. For example, a 
model for a receiving water body will need to consider inputs from its contributing watershed. If no data 
are available at the boundary between the receiving water and its watershed, the model extent may need 
to be extended to include the upstream area as well.  

4.1.3 Spatial Scale 

Spatial scale refers to the discretization of the model geographic scope or model domain to smaller units 
for analysis and solution of the equations representing the physical system. The size of model units may 
be determined by the amount of model parameter or input data or the scale at which model output is 
needed.  

4.1.4 Time Window 

The time window refers to a period, real or synthetic, over which model results are presented. This 
depends on the data availability, the time frame of interest in the model question, and also the model 
complexity. For complex, numerically detailed models, computational demands limit the length of the 
time window over which model results are reported. 

4.1.5 Time Step  

The time step refers to discrete time points associated with model calculations and can range from 
seconds for process-oriented physically-based models to years for economic planning models. The time 
step is often a feature of the model formulation. 

4.2 Model Preparation and Evaluation 

4.2.1 Model Configuration 

Model configuration refers to the basic setup of a model representing the geographic extent, 
dimensionality, and the physical properties of interest, such as the bathymetry of a water body or the 
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depth and layers in an aquifer. Spatial data are needed to adequately configure a model, and the 
granularity of the configuration should be consistent with the quantity of data available.  

4.2.2 Data Quality Assurance  

Models are dependent on data, and thus the quality of the data used for various steps in the modeling 
(i.e., configuration, calibration, and testing) has a bearing on the study results. USEPA (2002) identifies 
quality assurance measures for data that have been collected under previous efforts outside of the 
modeling project. A quality assurance project plan document for this data should be prepared, following 
guidance in USEPA (2002). This will address four issues regarding how measurements are acquired and 
used for the project:  

 The need and intended use of each type of data or information to be acquired.  

 How the data will be identified or acquired and expected sources of these data.  

 The method of determining the underlying quality of the data.  

 The criteria (precision, accuracy, representativeness, comparability, completeness) 
established for determining whether the level of quality for a given set of data is 
acceptable for use on the project. 

Examination of these four issues will inform a determination of whether the given data source is an 
acceptable input to the modeling project, which in turn may reduce the chance of making decision errors 
based on the model results. 

If suitable or insufficient data is not available from previous efforts outside of the modeling project, then 
it is recommended that data be collected in a monitoring program that follows the USEPA Guidance on 
Systemic Planning Using the Data Quality Objectives Process (USEPA, 2006) and the USEPA Guidance for 
Quality Assurance Project Plans (USEPA, 2002). A quality assurance project plan should also be prepared 
for the monitoring program, following the 24 elements provided in USEPA (2002).  

4.2.3 Model Calibration 

As previously discussed, environmental models often use parameters that are known within a range and 
the most appropriate values are derived on a site-specific basis from the observed data. Models use 
parameters within equations to relate various influences and responses (e.g., rainfall to runoff). Some of 
these parameters may be readily determined based on field measurements or other observations. Often, 
however, many model parameters are either too difficult to measure (specifically with proper spatial 
resolution) or practically impossible to measure (non-measurable parameters). An example of a 
parameter that is too difficult to measure with adequate spatial resolution includes the hydraulic 
conductivity in aquifers (used for groundwater modeling); or the parameter Manning’s n coefficient for 
roughness in surface water bodies (used for streamflow modeling). Furthermore, some domains, notably 
in the biological, economic, and social sciences, inherently use parameters that are lumped and location 
specific, and not known a priori. 

Depending on the level of complexity, models can be posed with a small number of parameters or can be 
posed with a very large number of parameters – in extreme cases numbering in the thousands. The task 
of calibration—also termed training—is to find the set of best-fit parameters that describe the observed 
data with a given model. Formally, calibration is the mathematical process of searching for a solution that 
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minimizes or maximizes an objective function (i.e., a function quantifying a measure of error based on 
model simulations and observed data), by adjusting the values of n unknown parameters, which is a 
search in n-dimensional space. The general goal is to find a global best-fit, but in complex models this is 
often difficult, and it is not uncommon to find model calibration codes settling in local minima (see Figure 
10). Superficially, local minima have some features of a global minimum, but formally, they do not 
represent the best parameter fit. 

There are a wide range of common performance metrics for model calibration and testing used in the 
literature of environmental modeling as presented in Table 3. Since all model performance metrics have 
strengths and weaknesses, it is recommended that more than one metric (i.e., multi-objective 
optimization) be considered for calibration/testing of models. However, care should be taken as these 
metrics have different units and ranges. There are numerous published algorithms to help perform this 
search that are used in conjunction with environmental models, of which the Parameter Estimation and 
Uncertainty Analysis (PEST) tool is widely used for environmental models (theory in Doherty and Hunt, 
2010; Doherty, 2015; example application in Doherty and Johnston, 2003). 

The search process of finding best-fit parameters in calibration requires the model to be run multiple 
times, each run using a new combination of parameter values. As the number of parameters in a model 
grows, and as the model run-time increases, the computational burden of automated calibration grows 
exponentially. In many cases where complex, computationally intensive models are being used (with 
single run times over hours to days), calibration is often a more manual process, with expert users 
interacting with the model and applying knowledge of the parameter space to tune the overall 
performance. In a manual calibration process, model parameters are essentially tuned to minimize the 
difference between the model simulation and observed data. This is an iterative procedure and usually 
several rounds of model runs are performed to locate parameters that mimic the observed data with 
reasonable accuracy. Alternatively, additional computer resources are deployed during the calibration 
period, running the model on supercomputers or on the cloud to circumvent the computational burden. 

A good practice in all types of model calibration is to set aside a fraction of the observed data to 
independently evaluate the performance of a calibrated model.5  This is an essential step for 
statistical/empirical/machine learning models that have no underlying theory and the model credibility is 
based entirely on application to additional data. Indeed, in many machine learning platforms the 
separation of the available data into subsets for additional testing is a standard feature. This practice of 
setting aside some fraction of the total data for evaluation is also widely used for mechanistic simulation 
models. Although such models are based on theoretical foundations, it is advantageous in most settings 
to demonstrate good performance across a range of conditions represented by independent data.  

5 In some modeling literature, this step has been referred to as validation. For the purpose of this work, validation is defined 
more broadly and presented in the next chapter. 
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Table 3. Common Model Performance Evaluation Metrics 

General 
category 

Performance 
metric 

Description Issues Reference 

Standard 
Regression 

Slope and y-intercept The slope indicates the relative 
relationship between simulated 
and measured values. The y-
intercept indicates the presence of 
a lag between simulated and 
measured data, or that the data 
sets are not perfectly aligned. A 
slope of 1 and y-intercept of 0 
indicate that the model perfectly 
reproduces the measured data. 

Most often the 
underlying 
assumptions of 
linear regression 
(normality, 
randomness, etc.) 
are overlooked 
which can 
undermine the 
credibility of the 
inference from a 
regression model 

Willmott, 1981 

Pearson's correlation 
coefficient (r) and 
coefficient of 
determination (R2) 

r and R2 indicate the degree of 
collinearity between simulated 
and measured data. r is an index 
of the degree of linear relationship 
between observed and simulated 
data and ranges from −1 to 1. If r = 
0, no linear relationship exists. If r 
= 1 or −1, a perfect positive or 
negative linear relationship exists. 
Similarly, R2 describes the 
proportion of the variance in 
measured data explained by the 
model. R2 ranges from 0 to 1, with 
higher values indicating less error 
variance, and typically values 
greater than 0.5 are considered 
acceptable. 

r and R2 are very 
sensitive to high 
extreme values 
(outliers) and 
insensitive to 
additive and 
proportional 
differences 
between model 
predictions and 
measured data. 

Santhi et al., 
2001 

Dimensionless 

Index of agreement 
(d) 

Standardized measure of the 
degree of model prediction error 
and varies between 0 and 1. A 
computed value of 1 indicates a 
perfect agreement between the 
simulated and measured values, 
and 0 indicates no agreement at 
all. 

d is overly 
sensitive to 
extreme values 
due to the 
squared 
differences. 

Willmott, 1981 
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General 
category 

Performance 
metric 

Description Issues Reference 

Nash-Sutcliffe 
efficiency (NSE) 

The Nash-Sutcliffe efficiency (NSE) 
is a normalized statistic that 
determines the relative magnitude 
of the residual variance (“noise”) 
compared to the measured data 
variance (“information”). NSE 
ranges between −∞ and 1.0 (1 
inclusive), with NSE = 1 being the 
optimal value. Values between 0 
and 1.0 are generally viewed as 
acceptable levels of performance. 
Values less than zero (<0) indicate 
that the mean observed value is a 
better predictor than the 
simulated value, indicating 
unacceptable performance. 

NSE is sensitive to 
high extreme 
values. 

Nash and 
Sutcliffe, 1970 

Persistence model 
efficiency (PME) 

PME is a normalized model 
evaluation statistic that quantifies 
the relative magnitude of the 
residual variance (“noise”) to the 
variance of the errors obtained by 
the use of a simple persistence 
model. PME ranges from 0 to 1, 
with PME = 1 being the optimal 
value. PME values should be larger 
than 0.0 to indicate “minimally 
acceptable” model performance. 

Explicit 
assumption that 
variance increases 
linearly with time 
which should be 
revisited 
depending on the 
problem 

Gupta et al., 
1999 

Prediction efficiency 
(Pe) 

Pe is the coefficient of 
determination (R2) calculated by 
regressing the rank (descending) 
of observed versus simulated 
constituent values for a given time 
step. Pe determines how well the 
probability distributions of 
simulated and observed data fit 
each other. A prediction efficiency 
of 1 is perfect agreement at all 
times. Prediction efficiencies less 
than or equal to 0 do not provide 
useful predictions of the time 
variation of the observations. 

Sensitive to high 
extreme values 

Santhi et al., 
2001 
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General 
category 

Performance 
metric 

Description Issues Reference 

Performance virtue 
statistic (PVk) 

The performance virtue statistic 
(PVk) is the weighted average of 
the Nash-Sutcliffe coefficients, 
deviations of volume, and error 
functions across all flow gauging 
stations within the watershed of 
interest. PVk can range from −∞ to 
1.0, with a PVk value of 1.0 
indicating that the model exactly 
simulates all three aspects of 
observed flow for all gauging 
stations within the watershed. 

Since the main 
criteria used is 
NSE, this metric 
can also be prone 
to biases from 
large error 
residuals 

Wang and 
Melesse, 2005 

Logarithmic 
transformation 
variable (e) 

The logarithmic transformation 
variable (e) is the logarithm of the 
predicted/observed data ratio. 
The value of e is centered on zero, 
symmetrical in under- or 
overprediction, and approximately 
normally distributed. 

Not widely used 
and may not add 
much value 
considering the 
underlying 
distribution 

Willmott, 1981 

Error Index 

Mean absolute error 
(MAE), Mean square 
error (MSE), and Root 
mean square error 
(RMSE) 

RMSE, MAE, and MSE values of 0 
indicate a perfect fit. RMSE and 
MAE values less than half the 
standard deviation of the 
measured data may be considered 
low and that either is appropriate 
for model evaluation. 

Since these 
metrics use 
averaging on error 
residuals, they 
may not be 
suitable as an 
objective function 
for calibration. 
However, they can 
be used as 
additional 
performance 
validity metrics 
once the model is 
calibrated. 

Moriasi et al., 
2007 

Percent Bias (PBIAS) Percent bias (PBIAS) measures the 
average tendency of the simulated 
data to be larger or smaller than 
their observed corresponding 
values. The optimal value of PBIAS 
is 0.0, with low-magnitude values 
indicating accurate model 
simulation. Positive values indicate 
model underestimation bias, and 
negative values indicate model 
overestimation bias. 

The effects of 
individual error 
residuals may 
smooth out due to 
averaging 

Gupta et al., 
1999 
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General 
category 

Performance 
metric 

Description Issues Reference 

RMSE-observations 
standard deviation 
ratio (RSR) 

RSR standardizes RMSE using the 
observations standard deviation, 
and it combines both an error 
index and the additional 
information. RSR is calculated as 
the ratio of the RMSE and 
standard deviation of measured 
data. RSR varies from the optimal 
value of 0, which indicates zero 
RMSE or residual variation and 
therefore perfect model 
simulation, to a large positive 
value. The lower RSR, the lower 
the RMSE, and the better the 
model simulation performance. 

Same issues with 
RMSE 

Gupta et al., 
1999 

Another fundamental challenge associated with model calibration is that the relationship between model 
error and fitting parameters (termed the error surface) may be complex and fitting procedures may 
produce locally-optimum rather than globally-optimum parameter values. Local and global minima for a 
single variable are shown conceptually in Figure 10. Parameter identifiability is the possibility of learning 
the true values of underlying parameters with a large experimental dataset (Raue et al., 2009). Parameter 
identification for complex models is very challenging and true parameters values are often not obtained 
because of the increased computation burden. The topic of parameter estimation in environmental 
models is an active area of research, focusing on improving efficiency in search strategies and on finding 
global best fits (Solomatine et al., 1999; Thiemann et al., 2001; Madsen, 2003; Zhang et al., 2011; van 
Vliet et al., 2016). Regardless of the approach used for calibration, model documentation should describe 
the approach and explain why the approach is credible for a specific model. 

Figure 10. Schematic representation of a complex error surface with multiple local minima. 
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4.2.4 Reporting Model Performance 

A common framework may be used for evaluating model results in a systematic manner. A range of 
visualization approaches (one or more of the combinations shown in Figure 11) is considered suitable for 
evaluating quantitative results of the performance of a previously calibrated model. A model’s target 
performance may be defined as part of the stated modeling purpose or based on the best professional 
judgment of the modelers, given the uncertainties in input data, model parameters, and model structure. 

4.2.5 Model Testing (Evaluation) 

In this work, testing is referred to as a set of steps, 
beyond calibration, that are used to assess the 
correctness of a model. The term validation is also 
used in the literature to refer to this process; 
however, for this work, we prefer the more neutral 
term testing or evaluation. When considering the 
process of modeling and testing, it is important to 
note, with a few exceptions, the theory underlying 
most environmental models is often provisional. Site-
specific water resources and ecosystem models are elements of applied science -- in effect, an 
agglomeration of multiple physical, chemical and biological theories. As such, they are subject to 
improvement via invalidation, but cannot be proven valid under all conditions.  

For mechanistic models, testing can be thought of as a broad and continuing process, comprising varied 
analysis of the underlying biophysical representations under different conditions and exploring the role of 
uncertainty and parameter sensitivity, as described in the following chapters. Although the model 
calibration may include a diverse set of conditions, (e.g., wet and dry hydrologic cycles), the goal of such 
testing is to further demonstrate that the fundamental processes in the model perform reasonably under 
as wide a range of conditions as it may possibly be applied as known at the time the model is being 
developed. It is entirely possible, that in future, a model is exposed to conditions outside the bounds of 
model calibration, and that it may not perform as accurately as conditions it was calibrated for, i.e., 
model predictions do not match real-world observations as well as for the period of calibration. In such an 
instance, the calibration and testing processes need to be repeated over this broader time or geographic 
space. Implicit in the above statements is the acknowledgement that, despite calibration and testing, a 
model is not proven to be generally true for all conditions, only that it is demonstrated to work well over 
a range of conditions considered adequate by the model developers. These conditions include those for 
which data are available, but also extrapolation to a wider range based on the theoretical underpinnings 
of the model. However, this does not mean that a calibrated and tested mechanistic model will 
necessarily apply for all conditions. In the specific context of California water resources models, future 
extreme conditions related to drought, high temperatures, or sea level rise, all influenced by climate 
change, can be thought of as conditions that are outside the domain of mechanistic models being 
developed today. The application of models to these future extremes is often required for planning, but 
in the best case, model calibrations should be updated as new data become available.  

“No matter how many times the results of 
experiments agree with some theory, you 
can never be sure that the next time the 
result will not contradict the theory. On the 
other hand, you can disprove a theory by 
finding even a single observation that 
disagrees with the predictions of the 
theory” (Hawking, 1988). 
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Figure 11. Visualization of adequacy of model performance. Following Crout et al. (2008), but applied to salinity at 
Martinez in the western Delta, using observed data (Hutton et al., 2015) and a published model of salinity (Rath et 

al., 2017). (a) Linear time series plots of data and observations (solid line: model; dashed line: observations), (b) 
log-scale time series plots, (c) plot of residuals (difference between modeled and observed values), (d) observed 
versus modeled data on a linear scale, (e) cumulative distribution function of observed and modeled values, (f) 

observed versus modeled data on a log scale, and (g) autocorrelation function of residuals. 
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As noted above, in this work we recommend the use of terms testing or evaluation to refer to the steps 
described in this section. However, we recognize that the term validation has been and continues to be 
used in the modeling literature. The term validation is also used in the context of empirical/ 
statistical/machine learning models (or empirical models for short), but here the meaning is more limited, 
and generally refers to the evaluation of model performance using additional data, beyond what was 
used for model formulation and fitting. In addition, to be done correctly, the validation data must be 
strictly separated from the data used for model development. Multiple splits of the same data set can be 
performed, in multiple cycles of fitting and validation, but in each cycle some data must be set aside for 
validation. Unlike a mechanistic model, however, a validated empirical model has no theoretical 
underpinning, and is of limited value outside the data space in which it was developed. For this reason, 
such models need extensive data sets to be calibrated and validated and should be routinely updated as 
new data become available.  

4.2.6 Modeling Uncertainty 

Models, as simplifications of reality, are subject to various forms of uncertainty. In water and 
environmental models specifically, these sources of uncertainty include:  

i) Structural uncertainties associated with the model conceptualization and formulation, i.e., 
uncertainties in the basic representation of the natural world in mathematical form, 

ii) Calibration uncertainties related to the fitting approach and the values of the estimated 
parameters,  

iii) Data uncertainties including initial state variables, configuration and input variables,  

iv) Data uncertainties related to observed data used for training and testing the model, 

v) Projection uncertainties resulting from the need to make forecasts for developing future 
scenarios, incorporating variables such as climate, landuse, population, economic growth, 
etc.  

Further, the nature of uncertainty can be categorized into epistemic uncertainty and aleatory uncertainty
or stochastic uncertainty (Walker et al., 2003). Epistemic uncertainties stem from our lack of knowledge 
and they can be reduced with additional collection of data. In contrast, aleatory uncertainties originate 
from inherent variability and stochasticity of natural phenomena (e.g., climatic variability). Aleatory 
uncertainties cannot be reduced by collection of more data. For certain natural phenomena, this means 
that there is no direct way of getting perfect knowledge, given current understanding of the science. 
Climate predictions over different time scales are perhaps the most common example of aleatory 
uncertainty in environmental models. Modeling applications typically include both epistemic and aleatoric 
uncertainties. 

The lack of accounting for uncertainties when applying models may result in biased and unreliable results 
which will directly affect the decisions made based on the modeling results (Beven and Binley, 1992; 
Refsgard et al., 2007; Bastin et al., 2013). Various methods have been proposed to address the 
uncertainties from model parameters (Moradkhani et al., 2005), input data (Kavetski et al., 2003), 
monitoring data (Harmel and Smith, 2007), and model structure (Ajami et al., 2007) in hydrologic and 
water quality models. 
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Uncertainty assessment methods fall under one of two classifications: forward uncertainty propagation 
and inverse uncertainty quantification. In forward propagation methods, uncertainties in model inputs 
are propagated to the model outputs, such as a range of input scenarios to understand the effect on 
outputs. This is the most common usage of the term uncertainty analysis. In inverse uncertainty 
quantification methods, posterior distributions of model parameters are derived based on discrepancies 
between model simulations and observations and values of likelihood function. Inverse quantification of 
uncertainty is much more complex than forward propagation of uncertainty, as the modeler is essentially 
solving the problem in reverse (similar to calibration). However, the method provides essential benefits 
when modeling as in most cases the uncertainties associated with various model elements (parameters, 
inputs, etc.) are initially unknown and using an inverse approach, the modeler can estimate the most 
consequential uncertainties, and select them for further evaluation. Thus, these uncertainties can be 
propagated to simulations through a forward approach. In most inverse uncertainty quantification 
applications, the overall modeling uncertainties are quantified as a lumped value as quantifying the 
uncertainties associated with each model components is very time-consuming and in some cases 
impossible. Specifically, in highly complex integrated environmental models, decomposition of 
uncertainty and attributing portions of total uncertainty (total error) to various sources of uncertainty is 
an extremely challenging task which still is a subject of extensive ongoing research (Bastin et al., 2013). 

Bayesian-based methods are among the most commonly used assessment techniques for conducting 
uncertainty analysis for complex environmental models (Jia et al., 2018). Bayesian uncertainty analysis 
methods, rooted in Bayes’ Theorem, quantify parameter uncertainty by deriving the posterior parameter 
distribution from a combination of prior parameter distribution and a likelihood function. In most 
environmental models, specifically more complex models, the analytical solution to derive the explicit 
functional form of the posterior distribution is infeasible. Hence, sampling is often used to derive the 
posterior distribution. The Markov Chain Monte Carlo (MCMC) sampling schemes provide efficient 
algorithms to derive the posterior parameter distribution (Rath et al., 2017; Tasdighi et al., 2018). In this 
regard, multi-chain MCMC methods have proven superior performance and efficiency in sampling the 
parameter space and deriving the posterior distributions. Application of multiple Markov chains enhances 
the efficiency of the search algorithm and reduces the chance of being trapped in local optima (Ter Braak, 
2006). Two common multi-chain MCMC algorithms frequently used for environmental models are the 
DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt, 2016) and the Shuffled Complex 
Evolution Metropolis (SCEM) algorithm (Duan et al., 1992; Vrugt et al., 2003). While multichain MCMC 
algorithms have been employed in conducting uncertainty analysis for various environmental models, 
their application to integrated model frameworks remain very limited due to computational burden 
(Tscheickner-Gratl et al., 2019). 

4.2.7 Model Sensitivity 

Sensitivity analysis explores how changes in model inputs—most generally, boundary conditions, 
parameters, or configuration (as shown in Figure 9)—affect the variation in model outputs. Sensitivity 
analysis can illustrate which parameters have the least effect on results of interest, and in some cases, 
may allow for reduction of model complexity, by streamlining process representation. A related concept 
is uncertainty analysis, where model inputs are presented in a probabilistic form (i.e., as a distribution of 
values based on current information) to a calibrated model and the effects on model output are 
evaluated as shown in Figure 12. Sensitivity analysis also complements model calibration, which involves 
selecting parameter values based on the fit between model output and actual observations. Performing 
sensitivity analysis after model calibration helps to identify which fitted parameters are close to an 
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optimal estimate because low sensitivity indicates high uncertainty in the fitted parameter estimate. Both 
sensitivity and uncertainty analysis require the running of a model multiple times with a range of inputs.  

Sensitivity analysis is often used prior to conducting uncertainty analysis to increase the efficiency of 
uncertainty analysis by reducing the dimensionality of the model. Using sensitivity analysis, the modeler 
determines which model parameters have the highest impact on simulations (Saltelli et al., 2008). This 
will help the modeler to decide which model parameters should be included in the uncertainty analysis 
procedure, thereby increasing the efficiency of uncertainty analysis. Because sensitivity analysis of 
complex models can be highly computationally demanding, it is a focus of current research to help 
improve efficiency and applicability (Spear et al., 2020). 

Typically, sensitivity methods are categorized into local (LSA) and global sensitivity analysis (GSA)
techniques. Basically, LSA methods analyze sensitivity of model responses around some point in input 
parameter space (ideally around optimal locations), while GSA methods analyze the variability of model 
responses across the full parameter space. Figure 13 Illustrates the concept of local and global sensitivity 
analysis for a model with two parameters. For a model with larger number of parameters, the 2D 
response surface will change to a more than 2-dimensional (dimension dependent on the number of 
parameters) response space. Each black dot represents a combination of parameters used to quantify 
model response and ultimately determine the sensitivity of model response to each parameter. 

LSA is a partial derivative-based method to investigate the response of a small disturbance of each 
parameter around a specific location in parameter space on model output (Baroni and Tarantola, 2014). A 
common approach for conducting LSA is the one-factor-at-a-time (OAT) method (Yang, 2011). In OAT, 
one parameter is changed at each iteration. LSA techniques are appropriate for relatively simple models 
that show linear responses. Although LSA is computationally efficient and popular, it is not suitable for 
reducing the dimensionality of complex non-linear environmental models as it disregards the correlation 
between model parameters, and its results are dependent on location and often there is a lack of 
knowledge on the suitable location, i.e., the parameter true value (Saltelli et al., 2008). 

GSA investigates the effect of variations over the entire prior parameter space on model output (Saltelli 
et al., 2008; Pianosi et al., 2016). A sensitivity analysis approach that is commonly used with GSA is the 
“All-at-a-time” (AAT) approach. GSA does not have the limitations associated with LSA, as it does not rely 
on a pre-known optimal location for parameters. A common approach for GSA is rooted in relating the 
variance of the model responses to the change in input parameters (variance-based techniques). 
Variance-based sensitivity methods have shown very promising results. However, the sample size 
required to achieve reasonably accurate approximations can be rather large, which compromises their 
applicability to highly complex models. Several methods have been proposed to reduce the required 
number of model evaluations for approximating the variance-based indices. These include: (i) methods 
using the Fourier series expansion of the model outputs, such as Fourier Amplitude Sensitivity Test (FAST) 
for the approximation of the first-order indices, and the extended FAST for the total-order indices; and (ii) 
methods rooted in application of a model emulator which will be discussed further in proceeding 
chapters. 
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Figure 12. Simplified representation of sensitivity and uncertainty analyses. Inputs in this context may include 
parameter values, initial conditions and boundary conditions that are used for a single model run. During 

sensitivity analysis a model is run with a range of values for key inputs and the corresponding range in one or more 
outputs is evaluated. As part of uncertainty analysis, inputs are assigned ranges in values based on known 

estimates. 
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Figure 13. Illustration of the concept of local (left panel) and global sensitivity analysis (right panel) for a model 
with two parameters. For a model with larger number of parameters the 2D response surface will change to more 
than 2-dimension (dimension dependent on the number of parameters) response space. Each black dot represents 

a combination of parameters used to quantify model response and ultimately quantify sensitivity to each model 
parameter. 

4.3 Summary 

A model is ready to be applied to explore alternative scenarios once the analysis has been framed and the 
model has been prepared and evaluated. With regard to model preparation, while most environmental 
models should be configured and calibrated, the need for data quality assurance may be limited to when 
processed, clean data are unavailable. With regard to model evaluation, best practices require some form 
of performance reporting. But depending on the model formulation and domain (e.g., biological or 
economic models), such testing often cannot be performed. Analysis of model uncertainty and sensitivity, 
although providing great insight into model performance, is not often performed (often due to 
computational constraints). The steps outlined in this chapter are guidelines toward developing credible 
model studies; however, they are not meant to be applicable to all model studies performed in support of 
water resources and environmental problems.  
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5 Application of the Model 
The steps in evaluating a model, as laid out in the preceding chapter, are followed to compare model 
results against recent or past observed data/conditions and thus establish the credibility of the model. 
Once this evaluation is successfully completed, a model may be applied to answer the questions it was 
designed for, which often deal with conditions that are different from what is directly observable today. 
As noted in Chapter 3, it is important to clearly communicate the desired goals of a model study as early 
as possible and to align model sponsor and stakeholder expectations with the model features being 
implemented. Assuming that this has been done, there are still some decisions to be made during the 
application phase of a study, as described here. 

At the inception stage of a modeling study, the modeler will typically define the study goals and 
determine how the study results will be applied. Environmental model applications were previously 
identified in Section 1.2 under four unique classifications: i) planning and decision support, ii) science 
support and research, iii) real-time operations support, and iv) dispute settlement support. Special 
considerations are needed for each of these model applications as presented below. 

5.1 Consideration of Generalization During Application of Calibrated and 
Validated Model 

The parameter space of calibration and testing is a function of the data available. This is shown 
schematically in Figure 14 and referred to as P1. Once the calibration and testing steps are performed, it 
is possible that a model can be applied across a somewhat larger range, shown as P2. For mechanistic 
models, based on underlying physical/chemical principles, it is possible that a model can be generalized 
with some credibility from P1 to P2. In most cases, empirical models are less credible outside the P1 
space. Finally, there is almost always a global space, denoted as P3, over which most models, previously 
calibrated in P1, may not be correctly applied. In considering model applications to new conditions, it is 
important to make sure that the model is not falling into the P3 space. This is difficult to know a priori but 
in scenarios where it is apparent that conditions outside P1 are possible, i.e., unusually extreme boundary 
conditions are present, additional testing of reasonableness of results should be performed. This situation 
is most likely to occur where the calibration/testing data set P1 is small, and conditions outside it are 
probable. Similarly, where a large P1 data set is available for calibration/validation, falling into the P3 
space is less likely.  

5.2 Modeling in Support of Planning and Decision-Making 

Applications in this area include, but are not necessarily limited to, support for the development of new 
environmental regulations (e.g., changes to water quality standards or water supply regulation), support 
for facility or operational modifications (e.g., changes to reservoir operating rules), support for the design 
of new infrastructure (e.g., evaluation of new conveyance facilities, dam sites, or groundwater storage 
and extraction facilities), and support for potential future demand and supply conditions (e.g., changes in 
future land use and cropping patterns, water supply conditions and sources or climate conditions). For 
such applications, the model configuration will generally need to be modified for the new conditions 
being represented. Examples of these reconfigurations may include changing channel properties to 
reflect a restored section or a new element of infrastructure, such as a flow barrier or a pump-station on 
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a stream, or a new aquifer recharge and pumping facility, or change to an existing landuse, such as 
changing agricultural land to a suburban division. In each of these examples, the model setup would need 
to be changed to understand how a response of interest may vary. Thus, following the above examples, 
the imposed changes may be used to understand the impact on stream flows, groundwater storage, or 
water quality. Typically, a model may be used to explore a large number of scenarios to compare 
outcomes. Indeed, this ability to test different scenarios is perhaps the reason for which the modeling 
may have been undertaken in the first place. 

Another aspect of planning scenario development is the consideration of changing conditions (often 
temporal) over which stakeholders have limited control. Examples include future climatic conditions and 
extremes, future levels of development and growth, and future regulatory requirements. Scenarios will 
often be formulated with modified boundary conditions, representing external factors driving a model. 
Scenarios usually involve assumptions about the future and are thus associated with some uncertainty, 
and a wide range of alternatives may need to be evaluated.  

Figure 14. Illustration of concept of parameter generalization and the global parameter space. 

In most cases, the results of future scenario runs from a model are interpreted as a change from a 
baseline condition. A baseline condition may be observed conditions that occurred previously, or a 
baseline condition may itself be a modeled sequence using different historical boundary values as input. 
The change interpreted in either case, whether from real past values or a from modeled values, mean 
different things, and need to be explained adequately to stakeholders.  
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Scenarios may not always be forward-looking. In many instances, there is a need to understand how a 
natural system may have behaved in the past, perhaps in the absence of some human modifications that 
have been made. This could include, for example, the behavior of streamflows prior to the construction 
of dams on a river system. This may help define reference conditions for future restoration. Alternatively, 
model runs could be used to fill in data for missing periods, where there are observations before and 
after. 

Stakeholders will usually have an interest in identifying appropriate scenarios for a study and will be 
highly engaged in this phase of the work. 

5.3 Modeling in Support of Science and Research  

Outputs from spatially and temporally resolved models, particularly when the models are developed from 
basic physical and chemical principles, can be used for gaining a better understanding of a complex 
system. In such cases the model is run using well-defined boundary and initial conditions, and the model 
is used to interpolate in time and space using fundamental mass balance and transport equations. Such a 
model can provide more detailed insight than might be possible using direct observations alone. These 
models have a benefit in advancing scientific understanding, going beyond the typical use of models in 
exploring alternative “what-if” conditions. This includes the generation and testing of hypotheses to 
better understand a particular system, comprising natural and/or human elements. Science support 
activities include understanding the population behavior of key species, food web interactions, and 
changes in landscape over the long-term due to human pressures, climatic change, and extreme events. 
In these applications, the theoretical construction of the model is a tool for improved interpretation of 
the real world, to be used to provide explanations for real-world observations.  

The distinction between planning and decision-support models and scientific models is not a sharp one, 
and scientific models can also be used for decision support and planning. In many cases, however, 
detailed models for scientific research are computationally demanding, thus limiting their use in many 
planning-type studies.  

5.4 Modeling in Support of Real-Time Operations 

Modeling for real-time support includes calculations to support decisions on the time scales of hours or 
days. In California, this may include activities such as planning reservoir outflows for flood management 
and water supply, water exports from the Delta, barrier operations used to manage salinity at various 
locations, or drawdown effects at a well field or movement of contamination plumes as a result of specific 
groundwater operations. A key feature of real-time support models is the ability to be conducted rapidly 
and repeatedly, often many times a day, as new observed input data become available. Although such 
models must go through the same rigorous framing process to be credible as described in Chapter 4, 
once adopted, there is a greater focus on model efficiency. For a model to be useful in a real-time setting, 
it needs to provide responses quickly and be set up in a way that input and output data can be 
transmitted efficiently and often times with automated processes, such as Supervisory Control And Data 
Acquisition (SCADA) systems for rainfall, streamflow, groundwater levels, or operations data.  

Also, models used for operations have a need to develop forecasts looking forward in time (on the time 
scale of hours to months), and in such instances there is a need to forecast boundary condition values at 
future times. For evaluating the results of such modeling, it may be useful to discern the source of the 
uncertainty in the forecast, which may arise from boundary condition uncertainty and model uncertainty.  
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5.5 Modeling in Support of Dispute Settlement 

Model studies for dispute settlement are called out separately because of their common use in California 
water resources applications, such as for water rights adjudication or allocation of water among different 
types of beneficial uses. Models used in this application are not fundamentally different from those used 
in other applications; therefore, they should be developed and tested with the same scientific rigor. 
Because these models are specifically developed to address a legal issue, it is critical that the modeling 
question (as described in Chapter 3) be carefully addressed at the study inception. Given the additional 
scrutiny on modeling results during a legal process, it is perhaps more important to stress all of the 
framing issues that are presented in Chapter 4. Similarly, these model studies call for a high standard of 
documentation to fully and transparently explain the approach and assumptions used.  

5.6 Post Audit after Application: Compare Model Results to Future Data 
Being Collected 

For model applications that are used to make near-term forecasts or longer-term predictions, it is 
important to revisit model outcomes and to compare field observations with previously made model 
predictions. This process is termed a post-audit, and its importance has been highlighted in other 
modeling guidance as well, notably, the Guidance on the Development, Evaluation, and Application of 
Environmental Models (Gaber et al, 2009). For major models that are typically in use for a decade or 
longer, and where supporting observed data continue to be collected, a post-audit is not very difficult to 
implement. A post-audit can provide insight on conditions under which model performance was 
acceptable and in line with prior calibration history, thus providing credibility to the model and related 
modeling studies. A post-audit may also result in the opposite outcome. Under conditions where model 
performance was poorer than expected, the post-audit provides an excellent opportunity to revisit the 
fundamental conceptual framework, the forecast scenario assumptions, and/or the model calibration. 
Indeed, a post-audit can provide an excellent basis for future model improvements.  
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6 Communicating and Documenting 
Results 

Effectively communicating the results of a modeling study is a critical step in ensuring the success of a 
project. It is crucial that sufficient resources (time and money) are set aside at the outset of a modeling 
study so that proper documentation is not neglected as a study is nearing completion. Communication of 
model findings should satisfy the information needs of different audiences, from technical specialists to 
members of the general public. Different types of review beyond public participation, such as technical 
advisory committees, shared-vision modeling, and peer review, should be considered where appropriate.  

6.1 Presenting Results 

Model findings will be used by and will need to satisfy the information needs of different audiences, from 
technical specialists to members of the general public. Therefore, it is important that modelers are also 
engaged at different levels of this process such that the right information is transferred to each audience. 
Furthermore, audiences may weigh in on a modeling study during various phases of the project. 
Considerations for different audiences at project inception and completion are described below: 

 At project inception: 

 Technical specialists. Such audiences will need to understand why the modeling is needed and 
the approach to be used. Some of the items in the project inception checklist may serve to aid 
this goal (see Checklist 1). It is also important to convey the uniqueness of a modeling exercise, 
and how it extends current thinking. 

 Stakeholders. Such audiences will need to know the specific results and answers to be obtained 
through modeling and whether similar answers can be developed without modeling. They will 
need to know the costs, time frames, and major unknowns. Modelers should use this 
opportunity to highlight known and potential uncertainties, and how this might affect the 
outcome of the findings. Conceptual frameworks can be used as a tool to highlight the areas of 
focus of the modeling exercise. Stakeholders need to receive clear definitions and as little jargon 
as possible. 

 Near completion: 

 Technical specialists. Such audiences will expect to see many of the technical steps, such as the 
basis of the model, specific assumptions used, the results of testing and evaluation of 
uncertainty. It is also important to convey the novelty of a modeling exercise, and how it extends 
current thinking. The peer-review and publishing of key model studies provides additional 
credibility and also provides archival benefits for a modeling exercise. Finally, audiences may 
want to understand next steps or the long-term plan for the study, such as additional modeling 
or data collection. 

 Stakeholders. Such audiences need a high-level overview of key findings that can be quickly 
understood across a broad range of people, expertise and experience. Good results are simple 
and memorable and tell the key elements of a story in a compact manner. A new or updated 
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conceptual framework is a good summary of the overall exercise. Additional graphical resources, 
beyond the conceptual framework, may also be developed to help readers understand 
important findings. It is helpful to describe what was achieved through modeling and what 
remains unknown. 

6.2 Documentation 

The preparation of model documentation is an essential step in model development and use. Often, 
model frameworks are developed and maintained over years, sometimes by different individuals or 
teams with changing member composition. Good model documentation should serve the needs of 
developers and users, and may be accomplished by using the same set of documents. Ideally, 
documentation should be prepared in a manner that contains enough information to allow for the long-
term evolution of a model, both within the organization and external to it. From the perspective of 
external users in particular, documentation should explain the basis of the model and its use, including 
how key input variables are selected. Such documentation should include representative input files and 
result files to allow a user to reproduce a basic set of scenarios. 

In the case of a specific application, documentation needs to explain the best practice elements that are 
outlined in this chapter, including, model purpose, input data used, calibration approach, model 
evaluation, and model results in the context of the intended purpose. 

Writing model documentation is an essential step in model development. However, under short timelines 
and tight budgets, preparing documentation may become a low priority, particularly for models 
developed for a specific application with no expectation of re-use. Missing, inadequate, or out-of-date 
documentation is a barrier to model acceptance and may result in duplication of effort because a 
potentially suitable model may be overlooked for use in a later modeling study. 

Documentation can be broadly classified as internal and external. Internal documentation is generally 
embedded within the code in the form of function descriptions, code comments, etc. Internal 
documentation is important and should follow the conventions of the programming language(s) used to 
build to the model. External documentation is generally written for three audiences: (1) the developer(s) 
building, maintaining, and updating the model, (2) other modelers interested in the details of the model, 
including those interested in integration, and (3) users of the model with lesser need to understand the 
inner details of the model. 

Writing documentation that is easily understood across a variety of audiences is one of the challenges for 
model developers. The following elements are recommended to produce good documentation: 

 A general description of the model that includes the modeling goals and the scope of the model. 

 A point of contact for the model and information about how to get started using the model, 
including download links, installation instructions, hardware requirements, and licensing costs (if 
applicable). 

 Archiving of model code, whenever possible. 

 Assumptions and limitations of the model. 

 Model relationships and mathematical methods used, including a graphical conceptual model. 

 Data used to inform model relationships and input data requirements to run the model, including 
example input files. 
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 Model output format(s), including example output files. 

 Representation of uncertainty. 

 Availability of tools for conducting sensitivity analysis, post-processing results, etc. 

 Table(s) with all model parameters and their default values. 

A recent set of documents prepared for the California Central Valley Simulation Model (C2VSIM; provided 
online at https://water.ca.gov/Library/Modeling-and-Analysis/Central-Valley-models-and-tools/C2VSim) is 
an excellent example of documentation addressing most of the questions above, and serving a range of 
audiences. 

6.3 Review of Model and Study 

Most models undergo some form of internal review within an agency, firm or workgroup. For model 
studies that are used to make major decisions, or where general-purpose frameworks are being 
developed, a rigorous, and ideally, public review process should also be adopted. This review provides for 
an independent evaluation of a study and provides confidence in its findings and should be done in a 
manner that allows time for the review and for the modelers to adequately respond to comments. For 
this reason, it is important to allocate time for this phase of the study early in the scheduling process.  

6.3.1 Public Participation 

Interested and affected stakeholders, agencies, organizations, and individuals should be provided 
opportunities to participate throughout the modeling process. A wide variety of ways exist for agencies 
and consultants who conduct modeling studies to effectively communicate their modeling results and 
incorporate the ideas and comments of others into their work. Efforts to secure public participation 
should be pursued through public workshops, meetings, scientific/technical conferences, and technical 
advisory and citizens committees. A project website and list of interested parties should be maintained 
and used to communicate steps in the planning process. Where appropriate, specialized outreach such as 
language translation services should be conducted to engage members of disadvantaged communities 
(DACs). The lack of stakeholder and decision-maker communication as well as insufficient public 
participation in the water planning process can cause water projects to fail, illustrating the importance of 
investing resources in a robust public participation process from the early stages of a water resources 
planning project.  

6.3.2 Technical Advisory Committees 

Technical advisory committees (TACs) are often formed to provide ongoing review for modeling and 
planning studies. TACs typically come in two forms, as a committee of technical people representing 
stakeholders or as a committee of recognized independent technical experts. A TAC consisting of 
technical stakeholder representatives is usually formed to do the following (CWEMF, 2000): 

 Ensure that local and diverse expertise is used to address the problem. Often, the entities involved in 
a problem have different special expertise relevant for a modeling study. Having technical 
representatives from each knowledgeable entity helps to make this expertise available for the 
development and application of models. 
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 Enhance communication. Enhanced communication allows TAC members to become familiar with 
the details of a modeling study, which should reduce stakeholder misunderstandings of the model 
and model results. Ultimately, this should help build stakeholder confidence in model and planning 
study results. 

 Help model results be relevant for a wider range of interests and problems. A major model or 
modeling study will have implications and applications for many entities in a region. Thus, many 
entities will seek to use or modify the model to enhance their own understanding or for their own 
purposes. If a single model development exercise can support these broader interests, the regional 
interest is served. 

 Provide local experts a structured opportunity to contribute ideas and concerns. This is a very local 
form of “peer-review,” occurring early in the modeling process.  

The second type of TAC, a committee of recognized independent technical experts, can also have several 
uses. Technical experts independent of stakeholder interests can provide a form of technical arbitration 
on any controversial issues and may suggest additional approaches to address such problems. In addition, 
the credibility of model and planning study results can be enhanced by the involvement of recognized 
technical experts.  

6.3.3 Shared-vision Modeling 

A form of stakeholder involvement in which stakeholders and decision makers are involved from the 
outset is termed ‘shared-vision modeling’ or ‘collaborative modeling’. The fundamental concept is that 
those affected by water resource modeling should be provided the opportunity to participate in model 
design, development, evaluation, enhancement and use. In shared-vision modeling, the model is typically 
developed by a single neutral entity with very close coordination by technical representatives from each 
stakeholder group.  

Shared-vision modeling, like other consensus building processes, requires that strong motivation exists 
among the stakeholders to develop a consensus (Walters, 1997). Model development will progress much 
more slowly than if performed by a single group (Lund and Palmer, 1998). However, if the modeling and 
negotiation steps are considered as one extended process, shared-vision modeling usually saves time in 
the long run. If participants can arrive at agreement on what is contained in the model, then later efforts 
can focus on meaningful discussions among stakeholders and interpretation of the results, rather than 
negotiations about model content. 

6.3.4 Peer Review of Model 

Peer review is the process of soliciting input from experts who are not involved in a particular study but 
are familiar with the general topic. Peer review should provide timely, open, fair and helpful input and 
should ideally occur at various stages of the modeling life cycle, including conceptual framework 
development, model implementation in code, and model application to specific geographic area or 
problem. Engagement of the peer reviewers early rather than solely near the end of the project can allow 
for adaptive corrections of the modeling study. 

In 1997, California enacted a “peer review” requirement for technical analyses performed by the 
California Environmental Protection Agency (Cal EPA), including its member agencies. This law, Senate Bill 
1320 (Sher), requires all organizations within the Cal EPA, such as the State Water Resources Control 
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Board, to conduct an external scientific peer review of the scientific basis for any water quality rule and 
prescribe procedures for conducting that scientific peer review (California Senate, 1997). 

Peer review is most helpful when the following conditions are met: i) peer review is conducted in an 
atmosphere of transparency, collaboration and shared sense of purpose; ii) the review team reviews the 
source material and modelers’ responses to their comments; iii) adequate time and funding is budgeted 
for review; and iv) the review team contains some interdisciplinary membership to allow for a broader 
evaluation of basic assumptions and utility of the exercise. When conducting peer reviews, it is important 
to screen for potential conflicts of interest, and to select reviewers who will be independent and have 
prior minimal connection with the study. For a complex project, a review team may need to include some 
persons who are intimately familiar with the project who can provide needed information to the 
independent reviewers. If a sincere commitment to obtaining constructive feedback is not made through 
the above steps, there is a risk that peer review becomes more of a rubber-stamp than a positive 
contribution to a modeling study. Usually, adequate peer reviews of the study models can increase 
acceptance of a project. 

We recommend that most complex and consequential model studies be subject to peer review. Usually 
such reviews are conducted by the organization sponsoring a model study. For newly developed model 
frameworks, the process of anonymous peer review required by scientific journals serves as the 
touchstone for approval of a modeling study and is also recommended. Some major studies, especially 
those with major societal and ecological implications should also be subject to a “deep” peer review. This 
is not a standard term in the literature, but we use it here to refer to a peer review where reviewers are 
given the time and potentially funding resources to delve deeply into the concepts and application of a 
modeling study. Such deep review is unlikely to occur when reviewers are limited to basing their 
judgment on published documentation only.  

CWEMF has developed a process for peer reviewing models6. These peer reviews are not intended to be 
“stamps-of-approval” for particular models or to disapprove of models. Instead, they are intended to 
inform stakeholders and decision-makers of (1) whether or not a given model is suitable for intended 
applications, and (2) the temporal, geographic, or other limits on the use of the model. In general, 
CWEMF's peer review process follows the eight steps outlined below: 

 Model specification 

 Obtain funding 

 Select reviewers 

 Define scope 

 Assemble model, data, and documentation 

 Conduct initial review 

 Prepare draft report 

 Prepare final report 

6 More information is available at:  http://www.cwemf.org/Pubs/CWEMFPeerReviews.pdf
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6.3.5 Reproducibility 

Ensuring the transparency and reproducibility of a model can be considered an extension of the peer 
review process. Wherever reasonable, computer models should be readily available to all users for 
independent evaluation prior to formal use in public decision-making. Models developed in a transparent, 
open, and collaborative environment with stakeholders, will establish the long-term vision of model 
development. 

One way to ensure model reproducibility is to provide all modeling input files so that the model can be re-
run by another user. Or, where the model application is not too complex, the input data itself along with 
other model configuration data could be provided so that the user can re-create the model application 
using a different model framework. The objectives and phase of the modeling study or the needs of the 
model sponsor may dictate whether model reproducibility is appropriate. Even for some public agencies, 
there is no need or intention for the model to become public if the study is part of litigation. If the model 
is part of a preliminary study, it may not be appropriate to release the model for review until later stages 
of the study.  

Transparency and reproducibility can be limited by several considerations. Information on a particular 
model can be scattered over several sources, some of which may not be readily available to model users. 
In some cases, model documentation may not provide a sufficient description of the model or the 
calculation of model results. Furthermore, results presented in scientific publications may not correspond 
with parameter values or equations in the model source code. The shifting change in attitude and 
growing awareness towards the need for greater transparency is evidenced in part by the increasing 
publication of data and supporting materials on scientific journal websites (De Vos et al., 2011). Machine 
learning models (described further in Chapter 8), constructed using data, also pose challenges to 
reproducibility, and in many cases their behavior is treated as black box. As the use of such models 
becomes more commonplace, additional efforts  need to  be taken to share the contents of   a trained 
model,  such that another user can apply and test it in a manner similar to that for a process-based 
model. 

As for many phases of the modeling study, adequate model reproducibility can be ensured if the project 
allocates adequate resources for this phase. Allocating enough resources for reproducibility and other 
stages of the model study can increase acceptance and utility of a modeling effort over the longer term. 

6.3.6 Model Availability and Licensing Agreements 

Models used in public decision-making processes should be available for public scrutiny. Decision makers 
should be able to answer the question: “How did you get that number?” in a manner that is reproducible 
and transparent. Complete and well written model documentation is the most fundamental way to 
provide an explanation of model methods, logic, and results. Further, access to the model and input data 
can be helpful to understand (1) the details of model results and (2) the stability and sensitivity of these 
results to changes in input data and assumptions.  

Some models used for public decision-making are proprietary and may not be readily available for public 
scrutiny. A wide variety of legal agreements and licenses accompany most software packages. While this 
topic is largely beyond the scope of these protocols, in general, software agreements, licenses, and 
similar legal arrangements should protect intellectual property, while allowing model output to be used 
by all stakeholders in collaborative processes. Even if a model is proprietary, sufficient information should 
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be made available to enable stakeholders and decision makers to assess the reliability of model 
simulation results. Software license agreements for models should protect intellectual property, and 
should be limited to the model only and not be used to control the use of model output.  
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7 Encouraging Collaboration in the 
Modeling Community 

There are distinct individual and institutional roles in a larger modeling community: individuals/teams 
who develop and maintain specific models; individuals/teams that apply existing models to specific 
situations; individuals/agencies who direct and use model results and drive the need for integration 
across disciplines but are not directly involved in running models; and other stakeholders who are 
affected by model outputs in some form. Modelers in different domains interact with one another and 
are typically aware of each other’s needs, even though there is not one top-down model structure that 
everyone adheres to. Engaging this community’s shared focus around important challenges can be 
accomplished with various approaches listed below. 

7.1 User Groups 

Model user groups typically focus on problem solving and development issues related to specific high-use 
models. The formation of additional user groups to support high-use models or domains would benefit 
model development and user training in much the same way as existing user groups have. Some currently 
active user groups are identified below, although this is not an exhaustive list. Some of these 
communities are for models specific to California.  

Delta Modeling — The Delta Modeling User Group (DMUG) was created by and receives ongoing support 
from the California Department of Water Resources (DWR) to facilitate the exchange of ideas and 
problem solving around the use of Delta hydrodynamic models. The user group is open to any interested 
parties and holds meetings three times a year. The website archives meeting presentations, notes, and 
annual newsletters. https://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-
tools/Delta-Modeling-User-Group

Integrated Water Flow Model (IWFM) —This user group, hosted by DWR and the United States Bureau 
of Reclamation (USBR), focuses on the development and understanding of the IWFM and IDC models. The 
group holds quarterly meetings with its records archived on the California and Environmental Modeling 
Forum (CWEMF) website. https://water.ca.gov/Library/Modeling-and-Analysis/Modeling-
Platforms/Integrated-Water-Flow-Model

Water Evaluation and Planning (WEAP) — This online user group was created to support WEAP model 
implementation. With over 30,000 members and many thousands active on forums, the website provides 
a virtual community for the model in addition to tutorials and user manuals. https://www.weap21.org

Groundwater Exchange —This online resource is a community/information site to share information 
related to the implementation of the Sustainable Groundwater Management Act (SGMA), including 
planning documents, data, and models. https://groundwaterexchange.org/ 

MODFLOW User Group—This is an online group to support the development of MODFLOW applications, 
not limited to California. https://groups.google.com/g/modflow 
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7.2 Virtual Community of Practice 

In California, the “virtual” or online community provides a vast network of development and support for 
modelers. Online forums and user groups have filled the local gaps in technical support and many 
regional models have roots in the broader modeling literature and community. Additionally, the virtual 
community has benefited from online resources such as code repositories and cloud storage and 
computing. Cloud storage and sharing, such as Box, Dropbox, SharePoint, and Google Drive, have also 
allowed for more efficient transfer files and data and collaboration. Transparency and open 
communication about models have been enhanced through the use of these storage and sharing tools 
and continue to be utilized by regional modelers. In the future, integrating existing virtual infrastructure 
utilized by the modeling community will facilitate efficient engagement. 

Modern software development in general—even outside of scientific modeling—has taken on an 
increasingly distributed, collaborative paradigm. The use of online development platforms like GitHub has 
become a very common way to distribute open-source software for projects of all sizes, ranging from 
small, specialized packages of just a few files and dozens of lines of code to entire programming 
languages central to modern scientific computing like Python. 

These types of development platforms incorporate features like version control for project source code 
and data files, integrated issue/bug tracking, automated build and testing processes, and project wiki 
pages. Scientific models that want to follow trends in best practices from the broader field of software 
development will consider using these types of structured, collaborative coding tools. Even for projects 
that cannot be open-sourced either temporarily or permanently, similar enterprise-focused workflows 
exist to facilitate a collaborative software development process among a closed group of users. 

An important challenge that should be addressed for all virtual communities is continuity and retention of 
information. In most cases, information is lost upon completion of a project or when an immediate need 
is met. Implementing processes for managing and archiving information for future use will require 
dedicated staff time in an organized framework. 
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8 Emerging Technologies Supporting 
Model Development 

Model developments are dependent on computer technologies whose rapid evolution has society-wide 
impacts. The purpose of this chapter is to provide a snapshot of technologies and open-source and 
proprietary tools that appear promising in the domain of water and environmental modeling. Emerging 
technologies are described across six key areas: (1) innovations in data capture, (2) data analysis 
frameworks, (3) machine learning frameworks, (4) data visualization and communication technologies, (5) 
tools for organizing workflows, and (6) new methods in software engineering and architecture. Even 
though these technologies may provide future modelers with significant new capabilities, the general 
sequence of steps for performing robust modeling as outlined in Chapters 3 through 6 are still expected 
to apply. 

8.1 Innovations in Data Capture  

With breakthroughs in data gathering frequency and data storage capacity, the future of modeling is 
increasingly shaped by how the modeling community wishes to deal with large volumes of different types 
of data. In general, the data that are commonly used in water and environmental modeling are observed 
and gathered through remote sensing, earth monitoring systems, field campaigns, citizen science 
initiatives, digitized historical data, and even other model outputs (Blair, et al., 2019).  

Several concerns arise when there is a plethora of data sources that are available to be applied to a single 
modeling question. First, the heterogeneity of the sources of data makes bridging the various data types a 
complex task as there may not be a one-to-one pairing of data points between collection methods. 
Additionally, each method offers its own measure of accuracy and precision. While the combination of 
multiple sources of data helps to bridge the gaps in observations and to address the shortcomings of a 
particular method, one should be mindful of the uncertainty in and degree of quality control as this is 
manifested in the credibility of the model results. There is both need for and motivation to traverse 
through many forms of data and to improve interoperability across data sets. To do this, it can be helpful 
to first identify the various features of data sets and the methods with which we can better interpret 
them. 

8.1.1 Geospatial Data 

As studies of environmental phenomena are to be applied in space and time, it is important to synthesize 
the varying spatiotemporal resolutions of each of the various sources of data to develop an 
understanding of patterns and dependencies within the area of interest. Advancements in remote 
sensing technologies, the ubiquity of mobile platforms, and the expansion of in situ sensor networks have 
contributed to a data pool of growing space and time complexity.  

In the field, mobile platforms provide new interfaces for models, especially where location-specific data, 
model inputs, or model output information can be provided with geospatially stamped information. Thus, 
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instead of imagining model outputs as static documents, they may be served online to support activities 
in the field and may encourage a closer integration of desktop-based modeling and field activities. This 
may be especially relevant in complex urban settings, related to stormwater management for example, 
where data on ground conditions can be input directly via mobile devices or key outputs can be viewed 
while in the field, more efficiently than is currently done. Observations can then be collocated with other 
data types by matching them in space and time. 

Geospatial data not only allow patterns to be visualized but also provide the structure needed to identify 
and analyze covariate effects between variables and to develop a more physically realistic model. By 
anchoring data in space and time, geo-referenced models develop an understanding of distance, 
proximity, contiguity, affiliation, co-occurrence, dependence, and segmentation – patterns which were 
otherwise masked in the rows and columns of traditional spreadsheets and databases. Figure 15
illustrates some of the relationships that could be hidden in geospatial data. The search for these patterns 
in geospatial data is supported by the development and improvement of spatial analysis techniques 
including overlay analyses, spatial interpolation techniques, geostatistical Gaussian processes, and 
multivariate statistics, all of which are available on open-source and proprietary geographic information 
system (GIS) software. The key features of some notable GIS software are summarized below. 

Figure 15. Illustration of spatial relationships such as distance, proximity, contiguity, affiliation, co-occurrence, 
dependence, and segmentation. 
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 ArcGIS is a mapping and spatial analytics platform that offers imagery tools to create smart 3D 
models, developer tools to create custom web, mobile, and desktop applications, APIs for Python 
and SQL queries, and a database of basemaps, imagery, and authoritative maps on a multitude of 
topics. ArcGIS can be deployed on its own highly scalable cloud infrastructure, on cloud platforms 
such as AWS, Microsoft Azure, or on a local distributed system. 

 QGIS offers many of the basic capabilities that are available on ArcGIS. For more experienced GIS 
analysts, the limited functionality of QGIS can be improved upon through the extensive plugin 
architecture and libraries. Modelers can even code new applications in C++ and Python.

 Google Earth Engine is a platform which integrates custom algorithms with satellite imagery and 
geospatial datasets. It offers APIs for coding in Python and JavaScript, code editor tools for 
interactive algorithm development, and integration with Google’s cloud services such as Google 
Compute Engine and Google Cloud Machine Learning. In addition, Google Earth Studio, an 
animation tool, and Google Earth VR provide the visualization tools needed for a multi-
perspective survey of a model environment which can then be published on web and mobile 
platforms. 

 Golden Software is a scientific graphics development kit with tools to deal with the many 
dimensions of geospatial data, including: Surfer, to explore and analyze geospatial data; Grapher, 
a data presentation and plotting toolkit; Strater, to integrate subsurface, cross-sectional 
information; Voxler, which offers 3D modeling and spatial analysis capabilities’ MapViewer, a 
mapping and spatial analytics package’ and Didger, for geoprocessing static data formats to 
create dynamic data with adjustable projections. 

 Earth Genome serves public and private geospatial research, providing extensive datasets from a 
myriad of sources, microservices that improve data traversal, decision making tools and 
applications to analyze and interpret the data, and satellite imagery to encourage monitoring and 
reporting. GRAT, the Groundwater Recharge Assessment Tool, is one such cloud-based 
application that has informed planning and decision making in California and beyond.

Geospatial data and modeling offer an opportunity to more effectively communicate model results with 
stakeholders and sponsors. They can be seamlessly integrated with augmented reality and 3D imagery 
platforms to encourage engagement and to communicate model structure, organization, and results in a 
more intuitive manner. The growing development of multivariate spatiotemporal methods of analytics 
beyond clustering, propagation, interpolation, and extrapolation suggests that geospatial data will 
continue to play a key role in model development. 

8.1.2 Open Data 

Citizen science initiatives increase the availability of geospatial data and inform natural resource 
management, environmental protection, and conservation efforts all while fostering public engagement 
and contribution (McKinley et al., 2017). Currently, real-time air quality monitoring using “Internet of 
Things” sensors is setting the precedent for large scale open data collection, transmission, and analysis. In 
California, where wildfire-induced air quality changes have a severe impact on human health, home 
based air sensors have gained popularity. These personal laser particle counters measure particulate 
matter concentrations in real-time and use WiFi to project this data on a publicly accessible map. 

When effectively designed, standardized, and thoroughly evaluated, the open data that is gathered by 
citizen scientists can be of high quality and resolution and can circumvent the deployment of expensive 
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and vulnerable sensors. However, the reliability of such data is often questioned as it can be difficult to 
impose quality control and ensure the proper data collection protocol is being followed without being 
present at the time of data collection. 

Yet, data collected by citizen scientists have been utilized by the EPA, the Smithsonian Environmental 
Research Center, and the Earthwatch Institute. According to the EPA, by circumventing time, geographic, 
and resource constraints, crowdsourced data can leverage a large, untapped network of people while 
demanding minimal resources such as technical support and equipment training to support data 
collection. The Virginia Department of Environmental Quality, for instance, earned more than 275% 
return on investment on resources spent on volunteer water monitoring (EPA, 2019). The EPA also 
supports Georgia’s Adopt-A-Stream program, a volunteer-based initiative to sample local waterways, the 
results of which have been published in a handful of scientific journals. 

A belief in the use of crowdsourced, open data is that by increasing the availability and accessibility of 
tools, the sampling frequency and sample size can increase. Once a sufficiently large sample size is 
obtained, statistical methods can be used to isolate and remove outliers and gain a more accurate 
distribution of the data without necessarily engaging in rigorous quality control measures for each data 
point. There are several mobile applications that have been created to automate data collection and to 
deviate from the use of traditional equipment and sensors which are prone to malfunctioning and 
calibration errors. Some examples include: 

 mPing, which was created as part of the Precipitation Identification Near the Ground project and 
enables citizen scientists to report on precipitation such as rain, freezing rain, drizzle, snow, ice 
pellets, and mixed rain. This information is used by the National Severe Storms Laboratory to 
corroborate observations from radar detections, calibrate and correct discrepancies in satellite 
retrievals, and inform the future development of precipitation prediction technologies. The scope 
of this study was recently broadened to incorporate reports of wind damage, tornadoes, flooding, 
landslides, and visibility changes. 

 Marine Debris Tracker and Creek Watch, which allow users to take a picture of and report on 
waterways. These platforms are used to monitor the health of waterbodies by categorizing trash 
and debris sightings according to a preloaded list. This information can then be used by 
watershed groups and water management agencies to allocate resources towards rehabilitation 
and clean-up. 

 NOAA’s Water Level Reporter, which allows citizen scientists to submit water level reports that 
are accompanied by geo-referenced pictures. Here, the photographs serve as evidence of the 
visual conditions and can be used to standardize qualitative field observations using simple cross-
referencing methods or more advanced machine learning tools. This information is used by NOAA 
to study flooding and to communicate its impacts on a more precise scale. 

In California, examples of water projects which have benefited from citizen monitoring include: 

 SWAMP, Surface Water Ambient Monitoring Program, has a Clean Water Team volunteer water 
quality monitoring program. Volunteers are trained to be technical assistants, to support quality 
assessments, and to contribute to guidance documents that are curated by watershed 
stewardship organizations. 
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 Since 1988, the Elkhorn Slough National Estuarine Research Reserve, along with other 
foundations and agencies, has sponsored a water monitoring program that consists of twenty-six 
stations at which volunteer citizen scientists collect data on temperature, salinity, dissolved 
oxygen, pH, turbidity, nitrate, ammonium, and dissolved inorganic phosphate. The data is 
presented on an interactive report card and has supported a number of publications. 

8.1.3 Non-numerical Data 

From the discussion of open data, it is apparent that pictures and videos constitute data that can be 
collected to support more traditional numerical data. For instance, precipitation measurements that are 
obtained from a network of in situ sensors can be supplemented by satellite imagery and even videos 
taken by drones to better understand the spatial extent of riverine flooding and the resulting flow of 
water. In this example, in situ sensors offer a discrete, numerical snapshot of the event while satellite 
images can be stitched together with precision for a more continuous view of the spatial domain. 
Additionally, drone videography can provide continuous data in the temporal dimension for further 
analysis. 

In general, media comprising digital images, videos, and audio files, are unconventional yet useful sources 
of data that can be utilized in modeling. Novel image analysis and change detection techniques can be 
used to extract information from digital images and from videos containing radar and sonar data. 
Currently, innovation in this area is largely driven by the need to precisely extract information from 
biological microscopy image sets; however, the tools that have been developed can still be applied to 
environmental and water modeling. Some relevant examples of image analysis software and their 
environmental applications are listed below. 

 Resonon, which offers hyperspectral image analysis capabilities, offers image analysis software 
for both static (mounted or benchtop) and dynamic (drone-based) images. Coupled with Machine 
Vision software and a C++ software development kit, Resonon’s toolkit supports data processing, 
visualization, and custom plugins and has been used in hyperspectral imaging of algae blooms in 
Lake Erie and detection of nitrates, phosphates, and sediments in the Mississippi River. 
Additionally, Resonon provides cameras and supporting apparatus to optimize data collection and 
transmission in the field. 

 VIAME, Video Image Analytics for Marine Environments, is an open-source framework that 
contains workflows for object detection, classification, and size estimation models. It was 
developed in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and 
is commonly used for fisheries stock assessment. 

 Malvern Panalytical, is another company that has developed a spectral image analysis tool. Their 
static image analyzers can determine particle size (length, width), shape (circularity, convexity), 
and transparency and characterize both spherical and irregularly shaped particles in either dry or 
wet suspension. The findings are then statistically presented in particle size distributions that can 
be cross validated with alternative particle sizing approaches. Raman spectroscopy can also be 
applied to the samples to chemically identify particles and foreign substances. Typical 
applications of Malvern Panalytical’s image analyzers and other tools within the environmental 
realm include water treatment, microplastics characterization, and soil analysis. 
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Examples of open source computer vision software libraries and tools include: OpenCV, GPUImage, and 
ImageJ. They are suited to extract information from both images and videos. Alternatively, more 
established computer vision services and APIs provide baseline functions and tunable algorithms. Some 
examples include:  

 Clarifai, an image and video recognition service with features such as image and video processing, 
tagging, similarity searching, and a customizable detection and categorization algorithm. 

 Google Cloud Vision, an image analysis API with label and landmark detection. 

 Amazon Rekognition, a deep learning-based image recognition and analysis platform with object 
and scene detection that can be integrated with Amazon Web Services (AWS) to add tunable 
functionalities. 

 Microsoft Cognitive Service, a Computer Vision API with motion tracking, image tagging and 
categorization, line drawing detection, and thumbnail generation capabilities. 

 IBM Watson Vision Recognition Service with image detection, image class taxonomy and 
description, and image matching with a confidence interval. 

Further technological advancements in digital imaging, videography, and audio recording can be 
harnessed to supplement traditional, numerical data and provide a more holistic observation. 

8.2 Data Analysis Frameworks 

Data analysis is the process of systematically applying statistical and/or logical techniques to describe, 
condense, illustrate, and evaluate data. Data analysis and integration frameworks can be used as 
comprehensive tools to manage model input and output and display results. Commercial tools for data 
analysis and integration include Tableau, Qlik, Palantir, and Matlab. The programming languages R and 
Python are the most widely used non-commercial, or open source, programming environments for data 
analysis and graphics. These frameworks allow for integration of technical code and provide a means for 
managing the flow of input and output files. Data or model results can be tabulated or visualized by 
model stakeholders through the use of “data dashboards”, some of which can be freely published on the 
internet. 

According to Shamoo and Resnik (2003), data analysis procedures “provide a way of drawing inductive 
inferences from data and distinguishing the signal (the phenomenon of interest) from the noise 
(statistical fluctuations) present in the data.”  Technological advances are driving exponential growth in 
volume and speed of data generation, giving rise to the concept of “Big Data”. Big data, although informal 
in origin, has come to serve as a term to describe data that are high in volume, velocity, and variety, 
requiring new technologies and techniques to capture, store, and analyze. 

In the environmental modeling realm, the big data concept primarily pertains to techniques to capture, 
process, analyze, and visualize large datasets in a reasonable amount of time. When analyzed properly, 
big data can enhance decision making, provide insight and discovery, and support integrated model 
applications. 
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Another approach that has potential is the use of data-driven (i.e., black box) models with process-based 
models, building on the strengths of each modeling methodology. Big data analysis tools can be used to 
reconcile the strengths of black box and process-based modeling approaches and may allow mixing of 
models with different levels of information (Figure 16). The inter/multi-disciplinary nature of the 
integration problem necessitates the merging of large, disparate datasets (model inputs/outputs) which 
eventually should be analyzed to make inferences about the system being modeled. These inferences can 
be guided by process-specific knowledge in such hybrid models.

Figure 16. Big data analysis can help benefit both black box and process-based modeling approaches.  
Modified from Karpatne et al. 2017. 

A common method of creating hybrid, process-guided data science models is to incorporate prior 
knowledge using a Bayesian framework. Here, the model inferences are predictive and conditioned on a 
prior distribution of beliefs before any data is observed. Another alternative is to use cost functions that 
heavily penalize an inference that violates certain rules or laws such as conservation of mass, energy, and 
momentum. Conversely, if the goal is to preserve the internal structure of the model, then the model can 
be hybridized by simply creating artificial training data that “learns” the theories that we wish to impose 
on an otherwise purely statistical model. 

8.2.1 Model Emulators to Represent Complex Models 

When computationally intensive models are used in analyses containing multiple models, the combined 
model run time can be time-prohibitive on desktop machines and alternative approaches such as cloud 
computing may need to be considered. Another alternative that has gained some currency in the 
literature is to use an emulator for one or more models within an integrated modeling framework. 
Emulators need some resources to develop, but once created, they may allow certain types of model 
integration that may not be possible with the original models. Emulation approaches, summarized in 
Table 4, range from simple linear regression to sophisticated deep learning artificial neural networks. 
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Emulators represent the input/output relationships in a model with a statistical surrogate to reduce the 
computational cost of model exploration. In this approach, the computer model is viewed as a “black 
box” and constructing the emulator can be thought of as a type of response-surface modeling exercise 
(Box and Draper, 2007). The approach establishes an approximation to the input-output map of the 
model using a limited number of complex model runs. Of course, as with any approximation, emulators 
produce less accurate estimates. Therefore, model developers must consider this trade-off between 
accuracy and computational cost. 

Table 4. Model Emulation Approaches 

Algorithm Description 

Linear 
Regression 

Linear regression is a ubiquitous technique that estimates one numerical variable as a linear 
function of one or more other variables. It is conceptually simple and computationally efficient for 
datasets of almost any size. Assumptions on data structure are quite restrictive compared to some 
of the other more complicated algorithms listed below; thus, the ability to make full use of the 
theoretical results about a linear model is generally unlikely on real-world data. Nevertheless, linear 
regression models can serve as useful building blocks in more complex models. In principle, 
approaches such as regression should be limited to the range of data used to develop the 
regression, and not extrapolated beyond. 

Logistic 
Regression 

Logistic regression is a type of regression for binary (yes/no) variables. The estimated parameters of 
the model are still linear with the input variables, but a sigmoidal function maps the underlying 
linear predictor to fall within the range of 0–1. The value that a given combination of input variables 
outputs is the probability that the corresponding output variable has value 1 (e.g., yes/true). 

The use cases of logistic regression for binary variables are similar to those of linear regression for 
continuous variables: it is a conceptually simple and computationally efficient model that has 
restrictive assumptions compared to other more complex algorithms. Logistic regression is often a 
building block in artificial neural networks (ANNs) discussed below. 

Both linear and logistic regression fall in a family of techniques called “Generalized Linear Models,” 
but these two are the most common. 

Bayesian 
Inference 

Bayesian inference isn’t a specific model but rather a method for estimating model parameters that 
can be specified by probability distributions. In practice, many of the models that practitioners in 
water resources might be interested in using fall into this category, the main exceptions being 
“nonparametric” procedures like the Mann-Kendall rank-based trend tests. 

The main strengths of Bayesian inference are that uncertainties for the estimated parameters are 
automatically generated in a straightforward manner and that it is possible to incorporate prior 
information (e.g., expert knowledge, results of previous studies) as a regularizing effect to improve 
estimates on parameters in more complex models where the data alone might be insufficient. 

Bayesian inference is also one of the best ways to fit structured multilevel models, where the data is 
organized in a hierarchical fashion: e.g., a model of water samples from several lakes in a region 
might be organized so that the samples from the same lake are in the same group and share 
information with each other. 
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Markov Chain 
Monte Carlo 
(MCMC) 
Techniques 

A simple algebraic expression for the properties of a probability distribution generally only exists for 
the simplest examples. In other cases, including many of the Bayesian models that one would like 
to use in practice, alternative methods must be used to estimate the necessary calculations. MCMC 
refers to a state-of-the-art family of methods that explore probability spaces with a sequential 
(Markov) chain. These methods are particularly good at evaluating high-dimensional spaces that 
come up in real-world multivariate problems. However, they tend to be computationally intensive 
and can require some fine-tuning on the part of the analyst to ensure that they have converged.  

Spline Methods There is often a need to estimate the relationship between variables with unknown but nonlinear 
functional form. Splines are one way to do this—they are unknown smooth functions evaluated at a 
limited number of points (knots) that have some constraints on their degree of smoothness, often 
expressed as a penalty on the second derivative of the function. Splines can be computationally less 
expensive than other techniques discussed below, but the determination of where to place the 
knots can be difficult or arbitrary. Generalized Additive Models (GAMs) often use spline functions as 
a basis for expressing unknown smooth functions.  

Gaussian 
Processes 

Gaussian Processes is another method to estimate smooth functions. In contrast to being evaluated 
at a discrete set of points like splines, Gaussian Processes are parameterized in terms of a known 
(or assumed) covariance function between pairs of observed data points. This is often conceptually 
more elegant and sidesteps that question of knot placement, but it is computationally expensive in 
the general case and approximations often must be made on all but the smallest of datasets. 
Kriging techniques, often used by GIS practitioners, are a type of Gaussian Process. 

8.2.2 Big Data Analysis Technologies and Applications 

There is a variety of available big data analysis tools and frameworks that can be used for integrated 
models. Considering the large data requirements and computational power demand of integrated 
models, application of big data analysis tools is expected to create new efficiencies and new 
opportunities, such as the hybrid modeling approach described above. This chapter provides a list of the 
most popular big data analysis frameworks in use that have potential applicability in the environmental 
domain. There are some published environmental applications of specific tools (as noted below), 
although for many of these tools, their use in environmental applications has not been documented in 
the scientific literature.  

 Apache Hadoop: The Apache Hadoop software library is a framework that allows for the 
distributed processing of large data sets across clusters of computers using simple programming 
models. It is designed to scale up from single servers to thousands of machines, each offering 
local computation and storage. Hadoop is open source and many large organizations are already 
implementing its capabilities. Hu et al. (2015a) coupled a multi-agent system model with an 
environmental model for watershed modeling with Hadoop-based cloud computing. They 
reported an 80% reduction in runtime for the coupled model. The practice showed a good 
potential for scalable execution of the coupled model through application of Hadoop. Hu et al. 
(2015b) also used Hadoop-based cloud computing for global sensitivity analysis of a large-scale 
socio-hydrological model. They were able to reduce the computation time of 1000 simulations 
from 42 days to two hours. 

 Apache Spark: Apache Spark is an open-source distributed general-purpose cluster-computing 
framework. Spark provides an interface for programming entire clusters with implicit data 
parallelism and fault tolerance. Spark facilitates the implementation of both iterative algorithms 
(which visit their data set multiple times in a loop) and interactive/exploratory data analysis, i.e., 
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the repeated database-style querying of data. Omrani et al. (2019) implemented the Apache 
Spark framework to reduce the high computational burden of land change simulation model 
across a large region and span of time. Their results showed significant computational 
performance improvements compared to running the model out of the Spark framework. 

 Apache SAMOA: Apache SAMOA (Scalable Advanced Massive Online Analysis) is an open-source 
platform for mining big data streams. SAMOA provides a collection of distributed streaming 
algorithms for the most common data mining and machine learning tasks such as classification, 
clustering, and regression, as well as programming abstractions to develop new algorithms. 

 Microsoft Azure HDInsight: Azure HDInsight is a Spark and Hadoop service in the cloud. It 
provides an enterprise-scale cluster for the organization to run their big data workloads. 

 Teradata Database: Teradata database allows analytic queries across multiple systems, including 
bi-direction data import and export from Hadoop. It also has three-dimensional representation 
and processing of geospatial data, along with enhanced workload management and system 
availability. A cloud-based version is called Teradata Everywhere, featuring massive parallel 
processing analytics between public cloud-based data and on-premises data. 

 IBM Watson: Watson Analytics is IBM’s cloud-based data analysis service. When data are 
uploaded to Watson, it asks questions it can help answer based on its analysis of the data and 
provide key data visualizations immediately. It also does simple analysis, predictive analytics, 
smart data discovery, and offers a variety of self-service dashboards. IBM has another analytics 
product, SPSS, which can be used to uncover patterns from data and find associations between 
data points. 

 Skytree: Skytree is a big data analytics tool that allows the development of data-driven models 
using machine learning approaches. The tool provides capabilities for data scientists to visualize 
and understand the logic behind machine learning decisions. Skytree provides model 
interoperability capabilities and allows access through a GUI or programming in Java. 

 Talend: Talend is a big data tool that simplifies and automates big data integration. It also allows 
big data integration, master data management and checks data quality. Talend is open source 
and provides various software and services for data integration, data management, enterprise 
application integration, data quality, cloud storage and Big Data. 

 R: R is a language and environment for statistical computing and graphics. It is also used for big 
data analysis and provides a wide variety of statistical tests. R provides effective data handling 
and storage facility, a range of matrix operations, several big data tools, and great visualization 
capabilities. Many R packages for machine learning are also available off the shelf. 

 MATLAB: Matlab is a multi-paradigm numerical computing environment and proprietary 
programming language developed by MathWorks. Matlab has numerous designated data analysis 
toolsets. Statistics and Machine Learning Toolbox provides functions and apps to describe, 
analyze, and model data. Regression and classification algorithms provide the capability to draw 
inferences from data and build predictive models. The toolbox provides supervised and 
unsupervised machine learning algorithms for big data, including support vector machines 
(SVMs), boosted and bagged decision trees, k-nearest neighbor, k-means, k-medoids, hierarchical 
clustering, Gaussian mixture models, and hidden Markov models. Matlab also has strong 
visualization capabilities which are essential for big data analysis. 

 Python: Python is an interpreted, high-level, general-purpose programming language. Similar to R 
and Matlab, Python has numerous data analysis toolsets including NumPy, pandas, and Scikit-
Learn. Scikit-Learn implements a wide-range of machine-learning algorithms and allows them to 
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be plugged into actual applications. A range of functions are available through Scikit-Learn such 
as regression, clustering, model selection, preprocessing, classification and more. Scikit-Learn in 
in widespread use today for big data analysis. 

8.3 Machine Learning Methodologies and Frameworks 

Machine learning is the process of studying data to detect patterns by applying known rules to categorize 
data, predict outcomes, and detect anomalies. Machine learning is driven by algorithms which perform 
more accurately as new data is provided. According to Nevala (2007), these algorithms are suited to four 
main categories of problems: 

 where associations between data are qualitative and/or intuitively understood but not easily 
described by programmable logic rules; 

 where potential outputs are defined but non-uniquely depend on a diverse set of conditions; 

 where accuracy is more important than interpretability; and, 

 where a dataset is large and highly correlated such that traditional analytical techniques may 
develop biases based on how frequently correlated features appear in the input data, rather than 
their physical importance in the environmental system at hand. 

Machine learning can be supervised, reinforced, or unsupervised. In supervised machine learning, the 
algorithm is provided with sample inputs and corresponding outputs and learns by example. In reinforced 
learning, the algorithm is provided with rules and potential outcomes which govern its decision-making. 
In unsupervised machine learning, the algorithm identifies patterns and draws its own inferences. In all 
three cases, the machine learning algorithm is trained on a set of data and then tested on another, 
unseen set to gauge its performance. 

Oftentimes, machine learning is criticized for being a black box. This is explained in further detail in the 
subsections below. There are, however, techniques that can be used to assess the soundness of a model’s 
machine learning to ensure that it is capturing a theory-guided phenomenon rather than employing 
unfounded correlation. Ablation studies involve running a series of iterations in which the model 
capabilities are reduced one at a time to experimentally determine which functionalities embedded 
within the model are of greatest importance in the model’s performance. Created to unmask machine 
learning mechanisms, Layer-wise Relevance Propagation (LRP) is a technique that decomposes the output 
of a neural network into a relevance heat map, showing the importance of input variables and values in 
determining the output. This is an effective visualization of how the model learns and can be used to 
advise steps that can be taken to ensure that the learning process makes physical sense. Alternative 
methods that illuminate machine learning and its physical interpretations are explored in McGovern et 
al., 2019. 

Machine Learning Methods in Environmental Science (Hsieh, 2009) is a useful textbook to further explore 
applications of machine learning in modeling environmental systems, including water. Alternatively, 
Machine Learning for Spatial Environmental Data (Kanevski et al., 2009) explores machine learning 
applications in problems that specifically use geospatial data. For further reading on the statistical theory 
and the conceptual backbone of machine learning, Pattern Recognition and Machine Learning (Bishop, 
2006). 
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8.3.1 Neural Networks 

Artificial Neural Networks (ANNs) encompass a broad class of models that represent relationships among 
data in a fashion that has some similarities to biological neurons: variables correspond to nodes and the 
parameters of the model correspond to connections between the different nodes, usually between 
intermediate nodes that represent internal model state. The relationships that ANNs can represent are 
very general—they are often described as “black box” models—and the complexity of those relationships 
is determined by the structure of the connections between the nodes in the network. 

Recurrent Neural Networks (RNNs) are best suited for time series data. Here, the sequential order of 
input data points is captured so that time-dependency can be incorporated into the model’s method of 
learning. The model parameters that are embedded in RNNs are shared across time steps. Once decided, 
these parameters remain unchanged and can significantly increase the speed at which neural network 
models are trained.  

A Convolutional Neural Network (CNN) is another variation of neural network architecture and is 
commonly used in image recognition and classification. A CNN contains one or more layers of 
convolutional nodes which act as filters. Their goal is to pinpoint the main features of a dataset by 
considering smaller subsets of the input data and figuring out their relative importance. In environmental 
modeling, this is used to distinguish signals of interest from potentially confounding noise. 

ANNs, CNNs, and RNNs are just some examples of different neural network model set-ups. These three 
are depicted in Figure 17. There are many more that have been developed in recent years, inspired by 
specific problems that data scientists have encountered. Neural Networks, in general, are very flexible 
models that can pick out unknown relationships among multiple variables, but they are computationally 
expensive to train. Non-deep networks (deep networks are described below) can require expert 
knowledge and pre-processing of data to get accurate, structurally valid, and generalizable models. As 
such, they provide the foundation for artificial intelligence and machine learning. 
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Figure 17. Graphical illustration of an artificial neural network, a recurrent neural network (RNN), and a 
convolutional neural network (CNN). The structure of a RNN and a CNN explain why they are better suited for 

time-series and classification problems respectively. However, the neural network structures above can be applied 
to a variety of machine learning problems. 
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8.3.2 Deep Learning (Subset of ANNs) 

Deep learning is a term that refers to the direction taken by a large part of the research effort in the field 
of machine learning over the past decade or so. It refers to specialized data analysis algorithms making 
use of a particular type of neural network with multiple layers (hence the “deep” terminology). Deep 
learning approaches have been able to handle machine learning challenges that were previously 
intractable. 

Among the best-known successes of deep learning algorithms are examples such as computer vision, 
natural language processing, or strategy games. However, these approaches have the potential to be 
uniquely applicable to any domain with a rich, complicated dataset where representation learning could 
be useful. 

The algorithms and software behind training and implementing a deep learning model can be complex, 
but there has been a proliferation of software environments, both open-source and enterprise-minded, 
for helping developers to create and successfully apply deep learning models. Many of these 
environments form an ecosystem centered around the Python programming language, but interfaces to 
other languages such as R or Julia exist as well. 

 TensorFlow is one of the best-known general-purpose deep learning frameworks. It originated at 
Google and has interfaces to various programming languages, including Python and C++. 

 Keras is another popular deep learning framework that is built atop TensorFlow 2.0. It is scalable 
and so can run on large clusters of GPUs for distributed model training and has the full 
deployment capabilities of TensorFlow. 

 Sagemaker is Amazon’s all-in-one machine learning platform, designed for integration with their 
cloud computing resources to train and deploy models that require that type of high-
performance computing.  

 Azure Machine Learning is a similar competitor from Microsoft that runs on their Azure cloud 
computing platform. 

 Intel oneAPI Deep Learning Framework Developer Toolkit is a software development kit that is 
optimized for large datasets and offers high performance using Intel’s CPUs and GPUs. It supports 
programming in C and C++. 

 NVIDIA CUDA-X AI is a unified deep learning software stack with libraries, toolkits, and pretrained 
models that GPU-accelerate deep learning in every framework and across applications including 
conversational AI, computer vision, and natural language processing. 

8.3.3 Ensemble Learning 

Ensemble modeling is widely used in the climate realm to obtain better predictive performance than can 
be achieved using any one model alone. The theory here is that a single model represents a single 
hypothesis or interpretation of the input data on which it was trained. Other models with their own 
parameters and structures represent alternative hypotheses that can be drawn from the same input data. 
The amalgamation of these models creates an ensemble which can counter the characteristic variance 
and biases that are introduced by each of the constituent models. In this way, older, off-the-shelf models 
that were deemed too narrow in scope can be revisited and improved upon in an ensemble set-up where 
their limitations are addressed by newer methods. 

Ensemble learning allows modelers to take advantage of various machine learning algorithms that have 
been developed to tackle water modeling problems that are specific to sites or environmental 
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characteristics. In theory, an ensemble model can result in overfitting of the input data; however, 
techniques such as bagging, boosting, and stacking address such issues. 

In hydrological models, a single model may perform well under certain conditions but may produce 
drastically inaccurate results in other climatic regions or even seasons. Thus, the concept of multi-model 
combinations has gained popularity. Xu et al. (2020) tested the performance of an ensemble of 
watershed models and that of a single watershed hydrological model using a number of evaluation 
metrics such as root mean squared error (RMSE), and the coefficient of determination (R2). The results 
show that regardless of the climatic conditions of the study area and the metric used for evaluation, the 
ensemble model consistently outperformed individual models. This observation is consistent across the 
literature in this field of research. 

A variety of techniques can be employed to create a suitable ensemble, ranging from taking a simple 
ensemble mean to determining non-linear weighting schemes which prioritize performance at discrete 
intervals. Sometimes, the latter example can be accompanied by yet another machine learning algorithm 
that derives a new optimal weighting scheme each time the ensemble is trained. Alternatively, ensemble 
methods can be used to fill missing historical data that might be useful for training models in the future. 

In all these instances, it is important to note that while in theory, an infinite ensemble size will produce 
the lowest error, in practice, ensemble construction follows a law of diminishing marginal returns: there is 
a great improvement in ensemble performance when a few, well-chosen models are used. As illustrated 
in Figure 18, following a certain point, the marginal improvement in ensemble performance associated 
with adding a new model to the ensemble may not be worth the additional computational cost and 
complexity. 

Figure 18. Diminishing returns in ensemble learning.  

8.3.4 Evolutionary Algorithms 

Water and environmental modeling are used to support decision-making processes. Oftentimes, the goal 
is to aid in environmental management and to evaluate the effects of certain activities. As such, models 
need to be designed to simulate real world dynamics as well as alternative realities, wherein other 
environmental conditions, opportunity cost scenarios, and strategic choices can be explored and 
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evaluated. The process of formulating an environmental problem in terms of objectives, decision 
variables, and constraints allows the model to evaluate the best solutions through some form of 
quantitative or qualitative optimization process. In practice, this would involve an evaluation of many 
different scenarios in search of the best alternative. However, this may not always be possible as an 
algorithm could converge at a local optimal rather than a global one (previously discussed in Figure 10). 

Evolutionary algorithms are a class of modern optimization techniques known as “metaheuristics”. They 
are best suited to find globally optimal solutions. This is because an evolutionary algorithm first generates 
a population of solutions and evaluates each solution’s fitness. This increases the probability of finding 
the global minima as the algorithm first explores a diverse range of points before choosing one to 
converge to. In addition, each new population of solutions is generated using a variety of heuristic 
operators such as crossover, recombination, and mutation, with an emphasis on the subset of solutions 
that have performed the best thus far. This allows the search to be governed by the properties that made 
past solutions most successful. This kind of search is well-suited for complex, non-linear problems with 
large solution spaces, multiple constraints, and multiple or competing definitions of cost functions. These 
issues regularly arise in environmental and water modeling. 

The searching behavior of evolutionary algorithms can be customized based on the optimization problem 
at hand. For instance, gradient methods tend to converge immediately so the direction of convergence 
and subsequent optimal solution is heavily dependent on the first iteration. Random searches, on the 
other hand, may take longer to converge. An evolutionary search algorithm can take advantage of both 
methods and apply them appropriately; however, this can be computationally expensive. In addition, 
evolutionary algorithms utilize past computations and solutions and can even rank the fitness of solutions 
that have been searched. This is a good bookkeeping strategy which also communicates how the 
algorithm is assessing solutions in search for a global optimum and which solutions are similar in cost. 
This can often be very insightful as several suboptimal but appropriate solutions can also be found and 
evaluated. Constraints, which can be embedded in the form of cost functions, are easily handled by 
evolutionary algorithms and can provide physical relevance to the model and search behavior. 
Evolutionary algorithms are also very efficient at dealing with multiple cost functions as they can search 
for an optimum across a multi-dimensional fitness landscape. 

In the realm of water resources, evolutionary algorithms have been employed in groundwater monitoring 
design, water resources planning and management, water distribution network design and optimization, 
transport modeling, water quality sampling optimization, lake and reservoir simulations, salinity 
estimation, and hydrological model calibration. Maier et al. (2014) provides a thorough review of 
evolutionary algorithms in water resource modeling and points to many leading researchers and their 
studies. 

8.4 Data Visualization and Communication Techniques 

An important facet of environmental and water modeling is the communication of model structure and 
results to diverse audiences that comprise both seasoned modelers and inexperienced but invested 
model stakeholders and sponsors. As the datasets that are used by environmental modelers are 
multidimensional and complex, a number of 2D and 3D experiential tools can be employed to both 
engage and illuminate the inner workings of water and environmental modeling.  
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8.4.1 Data-driven Storytelling 

Developments in data-driven storytelling are largely propelled by the needs of business intelligence 
analysts which, in many ways, are similar to the needs of modelers: both need to make models and data 
appeal to those who may not be directly involved in the modeling process. Some examples of data 
visualization tools include: 

 Tableau: Tableau is a widely-used data analysis and visualization tool. Tableau queries relational 
databases, online analytical processing cubes, cloud databases, and spreadsheets to generate 
graph-type data visualizations. The tool can also extract, store, and retrieve data from an in-
memory data engine. Tableau also has a mapping functionality with the ability to plot latitude 
and longitude coordinates and connect to geospatial information such as ESRI Shapefiles, Google 
Earth KML files, and GeoJSON. 

 Power BI: Power BI is a similar platform, created by Microsoft. Power BI provides the tools 
needed for users to create data dashboards and visualizations which integrate with Excel queries 
and data models. Supported by Microsoft’s robust repertoire of big data resources, Power BI 
enables non-data enthusiasts to build machine learning models which can deal with non-
numerical data including images and texts. Power BI’s platform can tap into sensors and provide 
real-time analytics as well while Power BI Pro provides cloud service for augmented analytics and 
automated machine learning. 

 Plotly: Plotly, or Plot.ly, is focused on data visualization without requiring programming or data 
science skills. Its GUI is designed for importing and analyzing data and uses the D3.js JavaScript 
library for all its graphics. Its dashboards can be generated in real-time as well as from existing 
data pools, and it supports exporting to a variety of visualization tools as well, including Excel, SQL 
databases, Python, R, and MATLAB. 

 Domo: Domo is a big data analysis and visualization tool that automatically pulls in data from 
spreadsheets, on-premise storage, databases, cloud-based storage, and data warehouses and 
presents information on a customizable dashboard. It has been lauded for its ease of use and 
how it can be set up and used by a wide range of users, not just a data scientist. It comes with a 
number of preloaded designs for charts and data sources to get moving quickly. 

A more exhaustive list of analytics platforms and their unique differentiators is compiled in Richardson et 
al. (2020), a report that was released by Gartner. While the above platforms were developed for business 
analytics, they are adequately furnished with tools to provide insights into many conventional 
environmental data sets as well. 

8.4.2 Augmented Reality and Virtual Reality 

Augmented reality (AR) and virtual reality (VR) have introduced new and powerful methods of data 
visualization. Such opportunities are only beginning to be exploited in the domain of water and 
environmental modeling. Mobile-based AR applications have been created to illustrate the flooding in 
immersive 3D experience as opposed to static top-down visualizations that can be made using traditional 
mapping software. For modelers, mobile AR is particularly compelling and easy way to communicate 
results with physical importance. All that is needed is a modern mobile device with 3D graphics 
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capabilities and a stakeholder can now be shown field conditions first-hand. VR can take this a step 
further by creating an interactive experience. 

Both desktop and web-based AR and VR tools can be employed in water and environmental modeling to 
aid many aspects of the modeling project from data collection to visualization. Google SketchUp’s geo-
location tool can simulate exact terrain imagery. Oxagile supports a 360o video viewing experience with 
advanced viewing analytics. Virtualitics offers a platform that harnesses research conducted by the 
California Institute of Technology and NASA Jet Propulsion Laboratory. It integrates machine learning to 
not only show how the effect of different variables based on the input data but create an immersive, 
multidimensional experience to demonstrate such findings in smarter ways. This is particularly useful in 
model calibration and parameter estimation. 

Augmented Environments (ANTS) is a project which specifically uses AR technology to explore physical 
and natural structures for the purpose of environmental management. Using a combination of tracking 
devices, a video camera, and human interfaces such as headsets, the ANTS system has been applied in 
monitoring water quality using pollutant transport models, visualizing temporal changes in water bodies, 
and superimposing synthetic images on the ground to reveal the location of underground water supply 
networks and subsoil structure (Romao et al., 2004). Haynes et al., 2018 demonstrates the use of mobile 
AR in flood visualization which is linked to a network of sensors that provide live measurements from the 
field. A preliminary evaluation of their proposed mobile AR platform shows positive stakeholder feedback. 

8.5 Workflow Organization Tools 

Code sharing, data storage, and workflow organization tools are of importance to modelers who are 
dealing with large data sets, complex models, multiple iterations of code, and multiple contributors to the 
project. Some examples of workflow organization tools include: 

 GitHub is a platform for organizing this team set-up. Code can be pulled, new features can be 
proposed, versions can be branched and then merged upon thorough review by teammates and 
upon clearing status checks. This creates and stores a repository where the source code is 
protected while new edits are evaluated. Github also integrates with other project management 
applications that specialize in debugging, quality control assessments, running test cases, and 
integrating annotations or notes. 

 BitBucket is another such repository hosting platform owned by Atlassian. BitBucket uses 
Sourcetree, a Git graphical user interface that helps coders visualize and manage their repository 
and traverse through versions of code with ease. 

 Google Cloud Source is a popular collaborative and scalable Git repository which offers the 
opportunity to connect the modeling workflow with other Google Cloud tools. This can help in 
efficient deployment of code when the goal is to create apps to enhance fieldwork or can allow 
coders to seamlessly build unique cloud functions to manage large databases on the cloud. 

8.6 New Methods in Software Engineering and Architecture 

As models grow in complexity and development schedules are compressed, management tools from the 
field of software engineering can identify practices that may be suitable for adaptation for the problems 
typically addressed in the water resources domain. Here we highlight methods in cloud and cognitive 
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computing which have evolved to automate, scale up, and manage modeling tasks where real-time data 
updates and new ways of thinking need to be handled efficiently and incorporated effectively. 

8.6.1 Cloud Computing 

Innovations in data capture (Section 8.1) indicate that there are several large and diverse datasets that 
can be applied to water and environmental modeling. The rapid creation and deployment of Internet of 
Things-based environmental sensors requires appropriate application programming interfaces to 
communicate data capturing protocols, host the data streams, and parallelly process large amounts of 
input data. This is both a technical and a logistical challenge. 

Cloud infrastructure is increasingly being deployed to support and manage these large data streams that 
are captured by smart objects and sensors. Cloud computing is a ready-to-use, scalable, on-demand 
computing environment that is hosted on the internet and uses a network of remote servers to provide 
computing power and storage beyond that which is provided by a local server. A modeler can create, 
launch, and terminate servers as needed to run a variety of simulations with varying computational 
requirements. Aside from the speed, flexibility, and cost effectiveness, cloud computing can be used to 
run routine model calibration and uncertainty analyses in more enlightening ways than traditional 
methods offer. 

Cloud platforms such as Google Cloud and Amazon Web Services offer relational databases which are 
structured to detect relations among the stored information. Examples include databases Amazon 
Aurora, Google Cloud Databases, and Azure Databases. Column-store databases such as Amazon Redshift 
and Google Cloud BigTable have the advantage of compressing and partitioning data, aggregating 
information, improving functionality using composite columns, scaling up for parallel processing, and 
efficiently loading and querying the data. Alternatively, document store databases such as Google Cloud 
Firestore and Azure Cosmos DB are best suited for data of a variety of structures, from spreadsheets to 
imagery. Finally, graph databases store data in the form of nodes that are connected by edges, allowing 
for fast querying and traversal with explicit linkages between data based on relationships that are 
prioritized. This is supported by Amazon Neptune, for instance. Thus, regardless of the future data 
storage, traversal, or querying challenges, there are numerous cloud tools available to create optimized 
databases.  

Many cloud providers and their computing services are available for modelers to use. According to 
Granell et al., 2016, these services can be broadly categorized as software, platforms, and infrastructures. 
Software such as Google Maps is already well-suited for collecting and organizing geospatial field data. 
With the help of Google App Engine as a platform, applications that use this data in modeling activities 
can be developed and run on the cloud. Hardware and system resources such as data centers comprise 
the infrastructural needs to support platforms and software that are traversing through large data sets. 
Amazon Web Services (AWS) is a cloud computing platform that is supported by Amazon EC2 and 
Amazon S3. GoGrid and The Rackspace Cloud are other examples of cloud infrastructure. 

Fustes et al., 2014 delineates the utility of cloud resources in marine data processing applications such as 
detection and localization of marine spills using remote sensing methods and advanced algorithms 
deployed within a cloud platform. Wan et al., 2014 shows how cloud infrastructure can improve 
computing performance and can manage, query, and analyze a global flood database in real-time while 
simultaneously providing effective location-based visualizations for the public. CyberFlood, the cyber-
infrastructure in this study, is built on Google Fusion Table. Microsoft AI for Earth, a bundle of cloud 
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platforms and infrastructures, is an initiative to make cloud computing more accessible. AI for Earth hosts 
a variety of geospatial datasets on which Azure cloud can operate and accelerate the modeling workflow. 
Various applications can also be created and deployed to provide further insights in the field while the 
cloud platform eliminates limitations pertaining to data structure and storage capacity. 

Cloud computing opens many opportunities in groundwater modeling. The increasing complexity and 
volume of environmental datasets make distributed parallel processing an asset in modeling. According to 
Hunt et al., 2010, parallel computing, enabled via the cloud, can “automate calibration and uncertainty 
analysis using parameter estimation techniques”, which is widely used for groundwater modeling. 
Beginning with user-specified model parameters, the parameter estimation process can be used to 
perturb parameters, observe the resultant effect on model performance, and use this knowledge to 
adjust the parameters optimally. In effect, parallel computing on the cloud performs a sensitivity analysis 
on the model with respect to changes in each parameter; however, the efficient delegation of adjusting 
parameters and running iterations gives parallel computing an edge over traditional sensitivity analyses. 
This method has been used to calibrate SWAT watershed models (Ercan et al., 2014). In the field of 
groundwater modeling, where the large number of parameters can introduce extremely high 
computational costs, cloud computing is a cost-effective and flexible approach for optimizing model 
calibration and running uncertainty analyses concurrently (Hunt et al., 2010).  

8.6.2 DevOps 

In the field of computer science there has been increasing focus on streamlining the process of 
development and delivery of increasing complex software systems. DevOps includes processes for version 
control, continuous integration, artifact management, automated testing, continuous delivery, and 
system monitoring that work together to both reduce the time to develop and deploy software and to 
improve the reliability of the software (Kim et al., 2016; Pipinellis, 2015). Version control has been in 
common use for decades to track and manage changes in sources code. Other components of DevOps 
are much newer and only gained wide use in the last ten to fifteen years. Continuous integration is a 
technique to automatically trigger new builds of a software package when new code is posted to the 
version control system. Artifact management is a technique for managing compiled software versions and 
resources (data files etc.) usually accessible through a web data service. Automated testing can be 
triggered with each new build or changes in dependent artifacts performing fast, low level unit tests or 
full system regression. With sufficient automated testing, it is possible to enforce quality assurance of the 
software and to automatically deploy software into a production setting. System monitoring and 
reporting is needed to administer the DevOps processes and head off any errors as rapidly as possible. 
These tools can be utilized with many different strategies for software development. One common 
strategy is where developers work in a copy of the code referred to as a feature branch. The developer 
performs both manual and automated testing on their local copy, and when the code is ready it is 
submitted to a staging branch. Further acceptance testing including deeper system regression is done on 
the staging branch, and only when the code is verified is it submitted to the mainline (production) branch. 

In many ways, the development and application of numerical models is similar to the process of creating 
and deploying complex software. Certainly, the development of model executables is in fact a software 
development process. But production application of numerical models can also benefit from DevOps 
tools and concepts. Pre- and post-processing scripts can easily be treated as source code and managed 
through a version control system. Model software versions and prepared model data sets (e.g., 
alternative scenarios) can be managed and distributed through artifact management systems. Continuous 
integration tools together with automated testing can be used to verify new model versions and 
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supporting data sets meet appropriate requirements, including automated validation by recomputing 
historical periods and comparing against previous results or historical data. Automated reporting, 
particularly of complex calibration/validation reports or QA/QC reports, can greatly reduce the time 
required to accept new versions of models and supporting data into the production modeling 
environment. The benefits to these ideas seem clear for real-time applications of models. But even for 
planning studies, streamlining the flow of the modeling process can be extremely useful. In particular, 
post processing of raw model output is almost always required to produce derived metrics which are the 
primary outcome of the modeling study, and complexity of the post processing may be similar to the 
complexity of the model itself. Treating the post processing steps as stream of operations through 
continuous integration/continuous delivery, any errors discovered can be corrected and results efficiently 
recreated, and, more importantly, the modeling team can be much more responsive to requests for 
revised outputs. 

Establishing the computer infrastructure and software tools to support DevOps within an organization 
can require significant investment and may also require some cultural changes within the modeling team. 
However, the long-term benefits that can be gained may outweigh the upfront costs particularly for 
groups with sustained commitment to carrying out modeling studies. 

8.6.3 Cognitive Computing 

Cognitive computing describes a system that strives to bridge the interface between people and software. 
Commonly associated with artificial intelligence, cognitive computing often involves the deployment of 
platforms which allow machines to interpret a user’s “native tongue” without requiring them to write or 
understand code or algorithms. Cognitive computing can be harnessed in environmental modeling where 
there is a need for context-based understanding of the underlying problem at hand and a method by 
which evidence can be gathered and qualitative reasoning can be organized. 

Cognitive mapping can be used to organize theory-based knowledge and statistical relationships based on 
causal relationships. This is important in a Bayesian sense where there is need to create hybrid, process-
guided data science models to take advantage of both theory and statistics while also being able to 
account for uncertainties. An example of cognitive mapping in lake eutrophication modeling and resource 
management is explored in Kouwen et al. (2008). A simple causal loop diagram can be used to show that 
nutrients promote the growth of algae but that increasing the biomass of aquatic vegetation can suppress 
algal growth by reducing the availability of nutrients. Integrating probabilistic models with these 
qualitative relationships can reveal that there are two stable equilibria for the lake system: a clear state 
with dense aquatic vegetation and a turbid state with widespread algal blooms. In a managerial sense, it 
may be intuitive to simply reduce nutrient concentrations to suppress algal proliferation and to steer 
towards the clear state equilibrium. However, a hybrid model developed using cognitive computing 
reveals that it is necessary to reduce water depth as well so that turbidity decreases, and vegetation 
growth is adequately promoted. In this instance, cognitive mapping merges qualitative causal 
relationships with data science models to quantitatively guide water management, indicating the amount 
by which water depth and nutrient concentration should be decreased in order to achieve the favored 
equilibrium state. 

Microsoft’s Azure Cognitive Services allow users to infuse artificial intelligence, in the form of machine 
vision and decision making, into their applications without the need for machine learning expertise. In 
environmental modeling, which begins from sensor measurements and field observations, cognitive 
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computing can be used to provide a machine with the sense perception needed to wrangle the input data 
so that the data analysis and interpretation steps become less intimidating. 
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9 Model Life Cycle Management 
Successful models tend to be applied to multiple studies over an extended life (sometimes over decades), 
either as-is or with modifications and updates. Codes and formulations from a successful model are often 
re-purposed and used in a new generation of models. Consequently, it is important to think about 
modeling protocols over the life of the model or the long-term life cycle. This is shown schematically in 
Figure 19. As shown in the figure, the computer implementation of each model is initially based on a 
specified conceptual framework and model structure. This leads to a computer implementation which 
may be used for one or more model studies. As information from multiple model studies is accumulated, 
a more nuanced understanding of the strengths and weaknesses of the underlying model structure will 
develop. This may help to inform and improve the underlying conceptual framework (shown as a 
feedback loop below), and ideally, result in updates and revisions to the model for future applications. 
Over the long-term, individuals responsible for model development will likely change and, therefore, 
there is a need to adequately document the existing model and to develop an effective long-term plan for 
code maintenance and migration to newer software platforms. In the context of modeling, a long-term 
life cycle refers to model management and maintenance activities that enable its continued improvement 
and evolution over time. 

Figure 19. The life-cycle of a typical model. 

Models represent large intellectual and financial investments, but in most instances, their long-term 
viability is unknown. Models are often developed to serve a specific need, and access to these models 
and related analyses rapidly diminishes over time. For key foundational models and related efforts, long 
term sustainability should be addressed early in its life cycle to make best use of the investments being 
made. This life cycle planning should identify the responsibilities, accountabilities, and resources needed 
to support a model over the long term, potentially over decades. This life cycle planning should also 
contemplate development of new versions and ongoing model evaluation. Because of the resources and 
long-term commitments required to sustain a model over time, this is an issue that should be brought to 
the attention of decision and policy makers early in the modeling process.  

For any modeling effort to be successful, leadership is needed to provide motivation to participants and 
sustained funding support is needed to allow models to develop over its life cycle. Such efforts involve 
some risk in that the resulting tools may not work as intended, may take too long to develop, or may be 
too computationally complex to be of practical use. Sustained funding recognizes that most modeling 
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efforts will take additional time and resources to be fully evaluated for real-world application. In most 
cases, leadership and commitment are likely to be present when the institutions’ missions and the goal of 
the specific modeling exercise are well-aligned.
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10Next Steps in the Implementation of 
Modeling Protocols 

Most modelers are aware of the concepts identified in the preceding chapters. However, many do not 
implement them for various reasons. This may be due to time and resource limitations associated with 
virtually all modeling studies; this may also be due to the lack of specific expectations in the broader 
community of modeling study participants. Thus, model sponsors may not know what specific and 
reasonable requests to make of modelers to guide a model study toward greater credibility and 
usefulness. This chapter outlines some activities to encourage broader adoption of these protocols. These 
protocols are not intended to be specific or prescriptive requirements, but to describe best practices that 
are expected to benefit the broader community of users 

10.1 Using the Modeling Protocols 

To encourage adoption of the best practices identified in this work, we provide three relatively compact 
summary sheets in the Executive Summary. The purpose of the first sheet (Checklist 1), designed as a 
checklist to be employed at inception of a modeling effort, is to enable various participants to agree on 
the basic features of the work to be done. The purpose of the second sheet (Checklist 2) is to evaluate 
and score a modeling exercise upon completion. The purpose of the final sheet (Checklist 3) is to evaluate 
the long-term sustainability of a modeling framework. 

The first sheet is designed with Yes/No responses, although additional narrative information can be 
provided. While there are no correct answers associated with the model study pre-audit, the questions 
are designed to flag issues that may need to be resolved before significant modeling study resources have 
been expended. 

The second sheet contains a list of questions that may be answered with narrative responses or with 
numerical scores. If the numerical scoring approach is used, a model study with a higher score is generally 
more desirable. A numerical scoring approach may be useful for comparing multiple model studies that 
employ the same type of domain modeling. However, this approach is of limited value when a unique or 
one-of-a-kind model study is to be evaluated. The questions provided in these sheets are offered as 
starting points to be modified as needed for specific agencies or applications. However, we expect many 
of the essential items will apply to most modeling studies. 

The third sheet is focused not on modeling per se, but on questions that help evaluate the long-term 
sustainability of a model framework. It is not intended to evaluate a single study, but to assess whether 
the framework used in one or more studies is well supported into the future. 

10.2 Targeted Outreach 

Additional targeted outreach to different groups of users may be needed to enhance the utility of these 
protocols, as proposed below. 
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10.2.1 Modelers 

By modelers we refer to model specialists who have the expertise to run, modify and maintain model 
frameworks and applications. It is important to get the buy-in of this group so that they can provide 
feedback on whether these protocols are practical, usable, and provide meaningful support toward the 
creation of high-quality model studies as outlined in CWEMF’s goals for this work. 

10.2.2 Model Sponsors 

Model sponsors typically fund model studies, and have an important role in directing them, even though 
they will not have a hands-on role in implementing these protocols. Outreach to this group should 
highlight the benefits of these protocols in creating high-quality studies, and raise their expectations 
when studies are planned. The need for additional resources to adequately apply these protocols should 
be described.  

10.2.3 Non-modelers 

These protocols can be used to communicate the practice of modeling to non-modelers, and to help 
identify the ways in which they may be able to contribute to the development of better models, even 
without specialist knowledge. The executive summary can be used as a stand-alone document to 
highlight key concepts presented herein.  

10.2.4 Students and New Modelers 

Much of modeling is a craft, with key steps not adequately described in textbooks or other documents. 
This protocols document is an effort to fill this gap and to introduce new generations of modelers to the 
processes and procedures of modeling that have evolved over several decades of practice. Toward this 
end, focused outreach through CWEMF meetings and alternative presentation formats such as short 
videos should be considered. 

10.3 Future Updates of the Modeling Protocols 

Since this report is a “living document,” it will need to be updated periodically, as the need arises. The 
authors recommend that CWEMF reconvene its Ad Hoc Modeling Protocols Committee at least once 
every three years to ascertain whether a partial or full update is needed. 
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Appendix A:  Attendees at Discipline-
Specific Targeted Meetings Held in 
Davis, CA 

Biological and Ecosystems Modeling  
February 26, 2020 

Name Affiliation 

Travis Hinkelman  Cramer Fish Sciences 

Ed Gross  Resource Management Associates, Inc. (RMA) /UC Davis 

Kenny Rose  University of Maryland 

Lisa Lucas  US Geological Survey 

Greg Reis  The Bay Institute 

Dave Smith  U.S. Army Engineer Research and Development Center (ERDC) 

Ben Geske  Delta Stewardship Council 

John DeGeorge   Resource Management Associates, Inc. (RMA) 

Mike Deas  Watercourse Engineering 

Tariq Kadir  California Department of Water Resources 
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Hydraulics/Hydrodynamics/Water Quality Modeling 
March 2, 2020 

Name Affiliation 

Tara Smith  California Department of Water Resources 

Deanna Sereno  Contra Costa Water District 

Bill Fleenor  UC Davis 

Chuching Wang  Metropolitan Water District 

Ben Bray  East Bay Municipal Utility District 

Willis Hon  East Bay Municipal Utility District 

Todd Steissberg  The U.S. Army Engineer Research and Development Center (ERDC) 

Steve Andrews  Resource Management Associates, Inc. (RMA) 

Tony Donigian  Respec 

Marisa Escobar  Stockholm Environmental Institute 

Nicky Sandhu  California Department of Water Resources 

Joel Herr  Systech 

John DeGeorge  Resource Management Associates, Inc. (RMA) 

Josué Medellín-Azuara UC Merced 

Mike Deas  Watercourse Engineering 
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Groundwater and Integrated Surface Water-Groundwater Modeling 
March 4, 2020 

Name Affiliation 

Tariq Kadir  California Department of Water Resources 

Can Dogrul  California Department of Water Resources 

Tyler Hatch  California Department of Water Resources 

Linda Bond  California Department of Water Resources 

Jon Traum  U.S. Geological Survey 

Charlie Brush  Hydrolytics 

Ali Taghavi  Woodard and Curran 

Matt Tonkin  SS Papadopulos Associates 

Claudia Faunt  U.S. Geological Survey 

Kathryn Koczot  U.S. Geological Survey 

Randy Hanson  One-Water Hydrologic 
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Hydroeconomic Modeling and Economic Modeling 
March 4, 2020 

Name Affiliation 

Alvar Escriva-Bou  Public Policy Institute of California 

Brad Franklin  The Nature Conservancy 

Steve Hatchett  ERA Economics 

Ray Hoagland  (Retired) California Department of Water Resources 

Katrina Jessoe  UC Davis 

Jonathan Kaplan  CSU Sacramento 

Dan Liu  State Water Resources Control Board 

Richard McCann  M-Cubed 

Maura Allaire  UC Irvine 

Kurt Schwabe  UC Riverside 

Harrison B. Zeff  University North Carolina Chapel Hill 

Spencer Cole  UC Merced 

Alex Guzman  UC Merced 

Josué Medellín-Azuara UC Merced 

Farhad Farnam  (Retired) California Department of Water Resources 

Tariq Kadir  California Department of Water Resources 
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Surface Water Hydrology/Management and Reservoir Operations 
March 10, 2020 

Name Affiliation 

Rich Satkowski  CWEMF Monitoring Protocols Committee Lead 

Tariq Kadir  California Department of Water Resources 

Erik Reyes  California Department of Water Resources 

Nancy Parker  U.S. Bureau of Reclamation 

Ali Taghavi  Woodard Curran 

Rob Leaf  Jacobs 

Scott Ligare  State Water Resources Control Board 

Helen Dahlke  UC Davis 

Kathryn Koczot  U.S. Geological Survey 

Jon Butcher  Tetra Tech 
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Appendix B:  Inventory of Models 

Model 
Category Model Type Model Name 

Reservoir 
Operations 
Models 

Model 
Frameworks 

WEAP (Water Evaluation and Planning) 

WRIMS (Water Resource Integrated Modeling System)  

HEC-ResSim (Reservoir Simulation System) 

Delta Specific 
Models 

CalSim II 

CalSim 3 

CALVIN 

SacWAM (Sacramento Water Allocation Model) 

Hydrodynamics 
Models 

Model 
Frameworks 

Delft3D-FM (Finite Mesh) 

EFDC (Environmental Fluid Dynamics Code) 

RMA2 

SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model) 

SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive 
Navier-Stokes Simulator) 

TRIM/UnTRIM (Tidal, Residual, and Intertidal Mudflat/Unstructured) 

Delta Specific 
Models 

DSM2 (Delta Simulation Model 2) 

ANN Model Emulators for DSM2 

FDM (Fischer Delta Model)                                                                                        

RMA Bay-Delta 2D/1D Model (RMA2/RMA11) 

RMA3D San Francisco Estuary Model (UnTRIM) 

Human Ecology 
and Economics 
Models 

Model 
Frameworks 

HAZUS-MH (HAZUS Multi-Hazard Model) 

IMPLAN (IMpact Analysis for PLANning) 

REMI (Regional Economic Models, Inc) 

SWAP (Statewide Agricultural Production Model) 

Delta Specific 
Models 

DAP (Delta Agricultural Production Model) 

F-RAM (Flood Rapid Assessment Model) 

Groundwater - 
Surface Water 
Models 

Model 
Frameworks 

IWFM (Integrated Water Flow Model) / IDC (IWFM Demand Calculator) 

MODFLOW (USGS Modular Groundwater Flow Model) 

MODPATH 

MT3D 

PHAST (PHREEQC And HST3D) 

STANMOD 

SUTRA (Saturated-Unsaturated TRAnsport) 

C2VSIM (California Central Valley Groundwater-Surface Water Simulation Model) 
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Delta Specific 
Models 

CVHM (Central Valley Hydrologic Model) 

CVHM-D (Central Valley Hydrologic Model - Delta) 

Fisheries and 
Ecosystems 
Models 

Model 
Frameworks 

ELAM (Eulerian-Lagrangian-Agent Method) 

inSALMO (Improvement of Salmon Life-Cycle Framework Model) 

Delta Specific 
Models 

Delta STARS (Survival, Travel Time, and Routing Simulation) 

DPM (Delta Passage Model) 

DSLCM (Delta Smelt Life Cycle Model) 

EFT (Ecological Flow Tools) 

ePTM (Enhanced Particle Tracking Model) 

IOS (Interactive Object-Oriented Simulation)  

SacPAS Fish Model 

SALSIM (Salmon Simulator) 

WRLCM (Winter Run Life Cycle Model) 

Greenhouse 
Gas Emissions 
and Land Use 
Models 

Model 
Frameworks 

CANVEG 

DAYCENT (Daily CENTURY Model) 

DNDC (DeNitrification DeComposition) 

Delta Specific 
Models 

PEPRMT-DAMM (Peatland Ecosystem Photosynthesis, Respiration, and Methane 
Transport – Dual Arrhenius Michaelis-Menten) 

SUBCALC 

Water Quality 
Models 

Model 
Frameworks 

CE-QUAL-W2 

HEC-5 and 5Q (Hydrologic Engineering Center) 

HEC-RAS (Hydrologic Engineering Center's River Analysis System) 

HSPF (Hydrological Simulation Program FORTRAN) 

PHREEQC (pH-REdox-Equilibrium) 

SWAT (Soil & Water Assessment Tool) 

VIC (Variable Infiltration Capacity) 

WARMF (Watershed Analysis Risk Management Framework) 

RMA11 

Delta Specific 
Models 

SBWQM (South Bay Water Quality Model) 

USRWQM (Upper Sacramento River Water Quality Model) 

RMA Bay-Delta 2D/1D Model (RMA2/RMA11) 

Soil Chemistry 
and Salinity 
Models 

Model 
Frameworks 

Hydrus 

Watsuit 

Consumptive 
Use Models 

Model 
Frameworks 

Cal-SIMETAW (California Simulation of Evapotranspiration of Applied Water) 

CIMIS (California Irrigation Management Information System) and AmeriFlux 

DisALEXI (Atmosphere-Land Exchange Inverse (ALEXI) flux disaggregation 
approach) 

ITRC-METRIC (Mapping of EvapoTranspiration with Internal Calibration) 

SIMS (TOPS Satellite Irrigation Management Support) 

Delta Specific 
Models 

DETAW (Delta Evapotranspiration of Applied Water) 

DICU (Delta Island Consumptive Use) 
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Processing and 

Visualization 

Tools 

Groundwater Vistas 

HEC-DSSVue (Hydrologic Engineering Center's Data Storage System Visual Utility 
Engine) 

ModelMuse 

PEST 

T-PROGS (Transition Probability Geostatistical Software) 

USGS Model Viewer 

Visual MODFLOW 

ArcMap 

QGIS 

The most up-to-date model inventory can be accessed online at: 
https://cwemfwiki.atlassian.net/wiki/spaces/MI/overview.
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