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Abstract

We describe an open-source linear programming (LP) and mixed integer linear programming

(MILP) solver, called jCbc, developed for use by CalSim/CalLitemodels through theWRIMS interface.

jCbc is a Java Native Interface (JNI) for the COIN-OR MILP solver Cbc and LP solver Clp with modi-

fications and new capabilities. The development of jCbc is based on a comprehensive review and

performance test of commercial and open-source LP and MILP solvers for CalSim/CalLite models.

jCbc exploits the domain-specific features for reducing the solution time of MILPs. Two examples

are presented to demonstrate the functionality and accuracy of jCbc.

Keywords: Cbc, MILP, solver, Branch-and-Bound, WRIMS, CalSim, CalLite

1 Introduction

jCbc is a Java Native Interface for COIN OR Mixed Integer Linear Programming Solver Cbc [3] and Linear

Programming Solver Clp [2], with some modifications and new capabilities added.

A Mixed Integer Programming Problem (MILP) has the following general form

min cTx
s.t. Ax ≤ b

Bx = d
l ≤ x ≤ u
xi ∈ Z for i ∈ I,

(1)

where x is the column vector of variables, and c, b, d, l and u are column vectors. Also, A and B are

the matrices of coefficients and I is a subset of variable indices. The equality and inequality constraints
in (1) are element-wise and l and u can be ±∞. jCbc solves problems that have the general form of

(1). An MILP model is either constructed using the functions and objects that are available in jCbc (see

Section 4.1 ), or it is fed to the solver using an LP or MPS format file (see Section 4.2). In either case, the

solver applies a Branch-and-Bound algorithm to find an optimal solution or declares that the problem
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has no solution or it is unbounded. See [6, Chapter 12] for an introduction on the MILP and algorithms

to solve the MILP.

TheMILPs in the CalSim andCalLitemodels are in the formof (1) and therefore can be solved by jCbc.

WRIMS is a water resources modeling system for evaluating operational alternatives of large and com-

plex river basins [1], and is the GUI through which CalSim/CalLite models are solved. The development

of jCbc is supported in part by a grant from the Bureau of Reclamation, US Department of the Interior.

The latest stable version of jCbc can be downloaded from https://github.com/JNICbc/jCbc. jCbc
comeswith a usermanual that can be downloaded from the above link and includes detailed discussions

about the existing tools in jCbc for solving MILPs.

The rest of this paper is organized as follows. Section 2 discusses the the components that are used

in building jCbc, the supported platforms and licensing in using jCbc. The available objects and models

in jCbc are discussed in Section 3. Two example Java codes are discussed in Section 4 illustrating how

jCbc can be used for solvingMILPs. Conclusions and discussion of futuresworks are presented in Section

5.

2 jCbc

jCbc uses an open-source software Simplified Wrapper and Interface Generator (SWIG) [4]. SWIG is

a software development tool that connects libraries written in C and C++ with a variety of high-level

programming languages. Most of Cbc and Clp objects and functions are carried over to the Java envi-

ronment using jCbc alongwith several new functions that are useful for different purposes such aswarm

starting, reducing solve time, customizing pre-solve and pre-process steps, coefficient scanning, parallel

attempts to solve a single model with different tunings, and customizing cutting planes and branching

methods. Currently, there are two main solvers implemented in jCbc:

1. Function solve() calls internal jCbc solver with the following tunings: Cutting planes are applied

only at root node, all heuristics are turned off, and there is no preprocessing and no presolve steps

used. In addition, the Primal Simplex algorithm is used for the LP part of the Branch-and-Bound

algorithm.

2. Function solve_whs() first uses ClpPresolve to simplify the model. Then, the information from

a previous model is passed to solve_whs() in terms of names and values of integer variables.

Using that information, a feasible solution is calculated for the new simplified model which in

turn is used for hot starting the Cbc Branch-and-Bound algorithm. As a result, the solving time of

solve_whs() function is significantly lower that the solving time of solve() function.

The jCbc github repository contains the following files and sub-folders: manual.pdf, jCbc.dll,
jCbc.i, jCbc.cpp, src, examples, make.bat. jCbc.dll is the shared library that is loaded into

Java. jCbc.i is the SWIG input file and jCbc.cpp is the C++ source file. src is the source folder and

examples contains example Java codes. make.bat is the makefile to compile jCbc. Each one of these

files and folders along with detailed process of building and using jCbc are discussed in manual.pdf.
jCbc takes advantages of third party packages ASL [7], BLAS [8], LAPACK [11],METIS [10] andMUMPS

[9] to reduce the time in solving anMILP. jCbc also uses the lpthread library to supportmulti-threading

in solving anMILP. jCbc is currently supported onWindows 64-bit and Linux 64-bit platforms jCbc is free

software, i.e., one can redistribute it and/ormodify it under the terms of theGNUGeneral Public License

as published by the Free Software Foundation, version 3.

3 Objects and Functions in jCbc

In this section, we introduce some of jCbc objects and functions that are needed to build a model. See

jCbc manual [5] for a complete list of objects and functions in jCbc along with their descriptions.
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3.1 Objects

jCbc has different types of objects for defining models, solver interfaces and arrays of doubles and

integers:

1. jCbcModel: this is the core object to build a model.

2. jOsiClpSolverInterface: this is the LP solver used inside a jCbcModel object. It needs to

be created before jCbcModel since most of the operations such as reading and writing a file or

building a model require this object.

3. jCoinModel: it is faster to define variables, bounds and constraints in a jCoinModel object and

then add them at once from this object to jCbcModel.
4. SWIGTYPE_p_double: this is a SWIG pointer for doubles.

5. jarray_double: this is a JNI wrapped object that must be used instead of an array of doubles

in Java to pass information to objects. Use command

SWIGTYPE_p_double A = jCbc.new_jarray_double(n)
to create a jarray_double of size n. To add an element to jarray_double, use the command

jCbc.jarray_double_setitem(jarray_double A,i,k)
to set A[i] = k. Use the command

jCbc.jarray_double_getitem(jarray_double A,i)
to access the element A[i].

6. SWIGTYPE_p_int: this is a SWIG pointer for integers.

7. jarray_int: this is a JNI wrapped object that must be used instead of an array of integers in

Java to pass information to objects.

3.2 Functions

The functions in jCbc let a user to set a name for a defined model object, add rows to the model, and

assign a solver interface to the model:

1. void addRow(jCoinModel A, int numberInRow, int [] index, double [] values,
double rowlb, double rowup, String name): adds a row of the form l ≤ ax ≤ u to a

jCoinModelobject. Theupper and lower bounds canbeDouble.MAX_VALUE (∞) and-Double.
MAX_VALUE (−∞) respectively. numberInRow is the number of variables with non-zero coef-

ficients in the row, and the coefficient of index[k] th variable in the row is values[k]. The

elements of index are not required to be sorted.

2. void addRows(jOsiClpSolverInterface A, jCoinModel B): add all rows at once from

a jCoinModel B object to a jCbcModel A object. Adding rows one by one to a jCoinModel
object and then copying all the resulted rows from the jCoinModel object to a jCbcModel object
is faster than adding rows one by one to a jCbcModel. The source in copying is jCoinModel B
and the destination is jCbcModel A.

3. void assignSolver(jCbcModel A, jOsiClpSolverInterface B): assigns

jOsiClpSolverInterface B as the LP solver interface for jCbcModel A.
4. void setModelName(jOsiClpSolverInterface A, String name): sets the model name.

4 Examples

In this sectionwe provide two examples to show how jCbc can be used for solving anMILP in the general

formof (1). The interested readersmay refer to the jCbcmanual formore illustrative examples. The Java

codes in these examples are executed on a dual core personal computer with CPU frequency@2.60GHz

and 8Gb RAM.
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4.1 Example 1

Consider the following MILP:

min x1 + 2x2 + 4x3
s.t. x1 + 3x3 ≥ 1

−x1 + 2x2 − 0.5x3 ≤ 3
x1 − x2 + 2x3 =

7
2

0 ≤ x1 ≤ 1
−∞ < x2 ≤ 10
2 ≤ x3 ≤ +∞
x1, x3 ∈ Z.

(2)

The following example code shows how to build a model in jCbc for the MILP in (1), solve the model

and finally retrieve the solution.

01: import src.jCbc;
02: import src.SWIGTYPE_p_CbcModel;
03: import src.SWIGTYPE_p_double;
04: import src.SWIGTYPE_p_int;
05: import src.SWIGTYPE_p_CoinModel;
06: import src.SWIGTYPE_p_OsiClpSolverInterface;
07:
08: public class example1 {
09: public static void main(String argv[]) {
10: System.loadLibrary("jCbc");
11:
12: SWIGTYPE_p_CoinModel modelObject = jCbc.new_jCoinModel();
13:
14: SWIGTYPE_p_OsiClpSolverInterface solver =
15: jCbc.new_jOsiClpSolverInterface();
16:
17: double objValue[] = {1.0, 2.0, 4.0};
18: double upper[] = {1.0, 10.0, Double.MAX_VALUE};
19: double lower[] = {0.0,-Double.MAX_VALUE , 2.0};
20:
21: jCbc.addCol(modelObject ,lower[0],upper[0],objValue[0],"x1",true);
22: jCbc.addCol(modelObject ,lower[1],upper[1],objValue[1],"x2",false);
23: jCbc.addCol(modelObject ,lower[2],upper[2],objValue[2],"x3",true);
24:
25: SWIGTYPE_p_int row1Index = jCbc.new_jarray_int(2);
26: jCbc.jarray_int_setitem(row1Index ,0,0);
27: jCbc.jarray_int_setitem(row1Index ,1,2);
28:
29: SWIGTYPE_p_double row1Value = jCbc.new_jarray_double(2);
30: jCbc.jarray_double_setitem(row1Value ,0,1.0);
31: jCbc.jarray_double_setitem(row1Value ,1,3.0);
32:
33: jCbc.addRow(modelObject ,2, row1Index , row1Value , 1.0,
34: Double.MAX_VALUE ,"r1");
35:
36: SWIGTYPE_p_int row2Index = jCbc.new_jarray_int(3);
37: jCbc.jarray_int_setitem(row2Index ,0,0);
38: jCbc.jarray_int_setitem(row2Index ,1,1);
39: jCbc.jarray_int_setitem(row2Index ,2,2);
40:
41: SWIGTYPE_p_double row2Value = jCbc.new_jarray_double(3);

4



42: jCbc.jarray_double_setitem(row2Value ,0,-1.0);
43: jCbc.jarray_double_setitem(row2Value ,1,2.0);
44: jCbc.jarray_double_setitem(row2Value ,2,-0.5);
45:
46: jCbc.addRow(modelObject ,3, row2Index , row2Value ,
47: Double.MAX_VALUE , 3.0,"r2");
48:
49: SWIGTYPE_p_int row3Index = jCbc.new_jarray_int(3);
50: jCbc.jarray_int_setitem(row3Index ,0,0);
51: jCbc.jarray_int_setitem(row3Index ,1,1);
52: jCbc.jarray_int_setitem(row3Index ,2,2);
53:
54: SWIGTYPE_p_double row3Value = jCbc.new_jarray_double(3);
55: jCbc.jarray_double_setitem(row3Value ,0,1.0);
56: jCbc.jarray_double_setitem(row3Value ,1,-1.0);
57: jCbc.jarray_double_setitem(row3Value ,2,2.0);
58:
59: jCbc.addRow(modelObject ,3,row3Index ,row3Value ,7/2.,7/2.,"r3");
60:
61: jCbc.addRows(solver , modelObject);
62:
63: SWIGTYPE_p_CbcModel Model = jCbc.new_jCbcModel();
64:
65: jCbc.assignSolver(Model ,solver);
66:
67: jCbc.setModelName(solver , "test");
68:
69: jCbc.solve(Model ,solver ,0);
70: SWIGTYPE_p_double sol = jCbc.new_jarray_double(3);
71: sol = jCbc.getColSolution(Model);
72:
73: System.out.println("Solution:");
74:
75: System.out.println("Objective_Value=" + jCbc.getObjValue(Model));
76: for (int j = 0; j < 3; j++){
77: System.out.println(jCbc.getColName(solver ,j)+"="
78: +jCbc.jarray_double_getitem(sol,j));}}}

The Java code has the following structure:

• Initializing and defining objects (Lines 1-16), in particular,

– Line 12: defining a CoinModel for adding rows and columns faster

– Line 14: defining the LP solver interface

• Building the model (Lines 17-31), in particular,

– Line 17: coefficients of the variables in objective function are set

– Line 18: upper bounds for variables are set

– Line 19: lower bounds for variables are set

– Line 21-23: optimization variables are defined

– Line 25-27: defining and initializing a SWIG type array of integers

– Line 29-31: defining and initializing a SWIG type array of doubles

• Solving the model, and getting and printing out the solution (Lines 33-78), in particular,

– Line 33: adding a row to CoinModel
– Line 61: adding all rows to OsiClpSolverInterface
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– Line 63: defining a new empty CbcModel
– Line 65: assigning the solver to CbcModel
– Line 69: solving the model

– Line 71: getting the solution

– Line 73-78: printing the solution

Assuming that the above Java code is saved in a file example1.java, the code can be executed by

typing the following commands in a Microsoft Windows cmd or Linux terminal:

• javac example1.java
• java example1

The output of the Java code in this example is as follows:

Solution:Objective_Value=9.0
x1=0.0
x2=0.5
x3=2.0

We note that both jCbc and the MILP solver Gurobi [12] give the same optimal values for the objec-

tive function and variables of the MILP in (1), which shows that jCbc’s solution is accurate.

4.2 Example 2

This example shows a Java code that reads a CalSim/CalLite model from the model.lp file, correspond-

ing to an MILP in the general form of (2), solves the model and reports the optimal objective value as

well as optimal values for integer variables. The model.lp file is generated by WRIMS [1]. This MILP

has 6914 variables (19 of which are integer variables) and 5770 constraints.

01: import src.jCbc;
02: import src.SWIGTYPE_p_CbcModel;
03: import src.SWIGTYPE_p_double;
04: import src.SWIGTYPE_p_int;
05: import src.SWIGTYPE_p_CoinModel;
06: import src.SWIGTYPE_p_OsiClpSolverInterface;
07:
08: public class example2 {
09: public static void main(String argv[]) {
10: System.loadLibrary("jCbc");
11:
12: SWIGTYPE_p_OsiClpSolverInterface solver =
13: jCbc.new_jOsiClpSolverInterface();
14: SWIGTYPE_p_CbcModel Model = jCbc.new_jCbcModel();
15:
16: jCbc.assignSolver(Model ,solver);
17: jCbc.readLp(solver ,"model.lp");
18: jCbc.solve(Model ,solver);
19:
20: System.out.println("Solution:");
21: System.out.println("Objective_Value=" + jCbc.getObjValue(Model));
22:
23: for (int j = 0; j < nCols; j++){
24: if ( jCbc.isInteger(Model ,j)==1)
25: System.out.println("x["+j+"]="+jCbc.jarray_double_getitem(sol,j));}}}
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The Java code in this example has the following structure:

• Initializing and defining the model object (Lines 1-12), in particular,

– Line 12: defining LP solver interface

– Line 14: defining CbcModel object

• Solving the model (Lines 16-18), in particular,

– Line 16: assigning solver to Model
– Line 17: reading the model from model.lp file

– Line 18: solving the model

• Getting the solution and printing it out (Lines 20-21), in particular,

– Line 20-21: getting and printing the optimal objective value

– Line 23-25: getting and printing the optimal values for the integer variables.

Assuming that the above Java code is in saved in a file example2.java, the code can be executed

by typing the following commands in a Microsoft Windows cmd or Linux terminal:

• javac example2.java
• java example2

The output of executing the Java code in this example is as follows:

Solution:
Objective_Value=-1.74658261388485E10
x[2760]=1.0
x[2782]=0.0
x[2785]=0.0
x[2787]=0.0
x[2789]=0.0
x[2790]=0.0
x[2793]=0.0
x[2794]=0.0
x[2796]=0.0
x[2797]=0.0
x[2799]=0.0
x[2801]=0.0
x[2888]=1.0
x[4465]=1.0
x[4518]=1.0
x[5443]=0.0
x[6746]=0.0
x[6747]=0.0
x[6907]=1.0

We note that Gurobi [12] gives the same objective value for the model in this example.

5 Concluding Remarks

In this paper, we introduced jCbc, an open source solver for MILP and discussed the objects and tools

that come with this solver. In jCbc, the state-of-art MILP algorithm is tuned for CalSim/CalLite models
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through the WRIMS interface [13]. There is an on-going effort on full integration of jCBC solvers with

WRIMS, and performance tuning and optimization on various computing platforms. In addition, we are

exploring a number of strategies to improve jCbc’s solution quality and solving time. Finally, we plan

to develop a sensitivity analyzer module in jCbc for so that it will reveal the sensitivity of the optimal

values to the perturbations of key parameters in CalSim and CalLite models.
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Abstract  10 

Most groundwater models currently in use like to claim that they are physically based and, by extension, 11 

scientifically defensible. This article reports a partial investigation of several such groundwater models. 12 

The study indicates that they may not have a solid physical basis when used in large-scale regional 13 

studies to estimate the stream-aquifer flow exchange.  A possible remedy exists that does not require a 14 

change in the 1-dimensional equation used to calculate seepage.  The empirical leakance coefficient is 15 

calibrated on the exact analytical solution to the two-dimensional flow configuration.  Several simulation 16 

examples illustrate that the seepage is significantly affected by the degree of river penetration of the 17 

water-table aquifer.  Most importantly the simulations demonstrate clearly that the leakance coefficient 18 

varies in time and is affected by the conditions prevailing in the river itself and its environment.  19 

 20 

Keywords.  Stream-aquifer interaction, Seepage, Stream depletion, Integrated Hydrologic Models 21 

1.0 Introduction 22 

Let us be clear.  Given the complexity of nature it is not possible to represent correctly every inch of soil 23 

or of aquifer material.  Thus models by necessity are and always will be largely conceptual.  With some 24 

hindsight let us look at how, in a legendary and fictional way, the leakance concept might have 25 

originated.  More seriously we shall look at how the empirical concept can be salvaged by relating it to 26 

another concept, that one derived from exact analytical considerations.  Only the case of a permanent 27 

saturated hydraulic connection is discussed in this article. The case of incipient unsaturated connection 28 

is discussed elsewhere (Morel-Seytoux et al., 2015).  29 

2.0 MODFLOW’s conceptualization of the stream-aquifer flow exchange 30 

Once upon a time in a distant land a team of alchemists wondered how to model the stream-aquifer 31 

interaction. “If only one could see how water flows under the ground!!!!!”  So they ask Superman who 32 

has Xray vision to help.  Alas even he could not see through!  Ah! said a bright one, that proves there is a 33 

clogging layer in the streambed.  But said a Thomas doubter what about the banks of the river? Some 34 

illustrator had created a, no doubt, highly imaginative picture of the flow for a children’s book, and it 35 

looked like this: 36 

 37 

 38 
Figure 1. Very fine numerical grid needed to describe the turning of the flow lines. 39 

mailto:hydroprose@sonic.net
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Of course one cannot trust a children’s book illustrator to provide a “scientifically defensible” picture.  40 

Yet some members of the team were a little perplexed. 41 

One alchemist had a brilliant idea. Why don’t we fold the sides flat?   Then all the water will flow 42 

vertically through the clogging layer…..  43 

 44 

 45 

 46 

 47 

         H                 H                                   48 

             49 

               50 

                          H       W      H   51 

                                                  52 

             Clogged layer          Wetted perimeter =  W + 2H, 53 

Figure 2. Flattening the sides.  Wetted perimeter is preserved.  However no river penetration 54 

 55 

That way flow through the clogging layer is entirely vertical…in other words…. seepage is vertical flow,…. 56 

seepage is vertical flow, ….seepage is vertical flow….“Why should the human brain be structured so that 57 

mere repetition, without added evidence, causes us to believe a claim more strongly.” (Tsipursky, 2017).   58 

As is well known in political circles if an “alternate fact” is repeated time and again, soon enough it 59 

becomes the “truth”… and, for proof, this recent figure.  It is as if a Fairy had built an invisible sheet pile 60 

where the sides used to be. 61 

 62 

 63 
Figure 3. Conceptualization of seepage calculation. After Waterloo Hydrogeologic, Inc. (2006).   64 

 65 

Ultimately the equation to calculate the seepage discharge from the river is: 66 

 Q = (
Ku

eu
)L(W + 2H )(hS -h f ) = LuLWp(hS -h f )  (1) 67 

where  is the seepage discharge,  is an (undefined) hydraulic conductivity,  is an (undefined) 68 

Rotate side  
to become flat 
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length,  is the length of the river reach,  is the width of the river,  is the river water stage,  69 

is the river head and h f  is the head at the center of the aquifer cell that contains the river reach (the 70 

river cell).   (W + 2H ) =Wp  is the wetted perimeter of the cross-section.   is often interpreted as 71 

the conductivity of a streambed clogging layer and  as its thickness but other interpretations are 72 

possible (McDonald and Harbaugh. 1988).  Eq.(1) expresses Darcy’s law for flow in a vertical direction.   73 

(
Ku

eu
) is referred to as the “leakance coefficient”, Lu.  Clearly as shown in Figure 1 the direction of 74 

flow right at the sides is certainly not vertical and in the case of a rectangular cross-section it is actually 75 

horizontal.  76 

3.0 MIKE-SHE ’s conceptualization of the stream-aquifer flow exchange 77 

Now in another much further East land it is said that after consulting Thor, one of the supreme Viking 78 

gods, another team of alchemists decided that rivers have no bottom and flow is only through the sides. 79 

 80 

Figure 4. MIKE-SHE’s conceptualization of seepage calculation.  After Figure 7.11 Section 7.6.2, 81 

page 203. A typical simplified MIKE SHE river link cross-section compared to the equivalent MIKE 11 82 

cross-section. 83 

 84 

In a real conflict of civilizations today the modeling world remains divided: Is seepage through the 85 

bottom or through the sides? 86 

On page 203 of a MIKE-SHE manual it is stated: “…MIKE SHE assumes that the primary exchange 87 

between the river and the aquifer takes place through the river banks. For more detail on the river 88 

aquifer exchange see Groundwater Exchange with MIKE 11 (V.1 p. 207)”. In the case of MIKE-SHE to 89 

calculate the seepage the cross-section of the river is assumed to be triangular. Of course for a 90 

triangular cross-section there is no bottom; so flow has to be from the sides.  It is true that to calculate 91 

the surface flow in the river reach a correct cross-section is used in MIKE-SHE (see Figure 4).  However to 92 

calculate seepage the triangular cross-section is still assumed.  93 

The contrast could not be sharper between MODFLOW and this code.  Whereas in one model flow is 94 

strictly through the bottom, in the other it is strictly through the sides. So here we have the example of 95 

two different models that both claim to be physically based, “scientifically defensible” and yet describe 96 

the process of seepage in fundamentally different ways.  This raises a few questions. Given that these 97 

“leakance coefficients” are calibrated does it matter if incorrect equations are used to estimate 98 

seepage? What errors will result from these two different conceptualizations? 99 
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From their respective conceptualizations one could infer that, if the river is very wide and the river stage 100 

low, then MODFLOW would provide a more realistic description of the phenomenon than MIKE-SHE.  On 101 

the other hand if there is a great deal of anisotropy in the aquifer most of the flow will take place 102 

through the sides since resistance in the horizontal direction will be much less than in the vertical 103 

direction.  Thus in that case MIKE-SHE would have an edge over MODFLOW.  104 

Actually this discussion is really futile because regardless of the assumptions made to justify the 105 

leakance coefficient used in Eq.(1)  it is the same identical equation which is used in both models after 106 

calibration of the leakance coefficient. 107 

Thus the problem is not with the assumptions and the conceptualization of the processes that led to the 108 

equation, Eq.(1), but with the equation itself.    109 

4.0 Can river penetration be neglected? Is a constant value of the leakance adequate? 110 

Given these preliminaries our intention is to show that it is possible to give back to the empirical 111 

leakance coefficient in the empirical Eq.(1) a physical basis.  Actually this has already being done and 112 

recently published (Morel-Seytoux et al., 2016). In this cited article it was shown that one could derive 113 

an equivalent leakance coefficient based on the “SAFE (Stream Aquifer Flow Exchange) dimensionless 114 

conductance” which, when introduced in Eq.(1,) would give the exact dimensional solution for a 115 

configuration such as shown for example in Figure 1.   Thus the internal structure of MODFLOW does not 116 

have to be changed at all.   117 

The two major problems with the empirical leakance coefficient are that: (1) there are no guidelines on 118 

how to estimate it, so that it is usually obtained by calibration, and (2) it is assumed that it is constant in 119 

time.  In other words it does not vary with the surrounding conditions, whether the river is in flood or 120 

recession, whether the weather is changing or not, whether additional wells will be added and pump in 121 

the future, etc. 122 

There are two purposes to the following demonstration.  The first one is to demonstrate that neglecting 123 

the river penetration into the aquifer can lead to significant errors in the estimation of seepage.  The 124 

second is to show that the leakance coefficient varies in time.   125 

Figure 5 shows the cross-section of a river reach in saturated hydraulic connection with a water table 126 

aquifer.  The system is subject to two external excitations:  the river head and the head in the adjacent 127 

aquifer cells.  Both vary with time.  These  excitations are displayed in Tables 1 and 2.  128 

   129 

 130 

 131 

 132 

 133 

 134 

  Adjacent Cell                                        River cell                                   Adjacent Cell  135 

  Cell width  G                                     Cell width  G                                 Cell width  G 136 

 137 

  Prescribed head                       Head  in center                         Prescribed head  138 

               in center of cell: 

   

hadj                      of cell: 

   

h f                            in center of cell: hadj                       139 

 140 

                     Aquifer impervious bottom 141 

Figure 5.  System cross-section 142 

Table 1  Evolution of  river stages with time  143 

Day  n    n £ 2           3£ n £12                 13£ n £ 32   33£ n £ 70           144 

H(n)       3.0            H(2)+0.1(n-2)         H(12)-0.1(n-12)              H (32)e
-

(n-32)

100  145 

                                              146 

River or Trench  
Width 2B, Depth H 
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Table 2.  Evolution of head in the adjacent aquifer cell with time (days) 147 

   For               n £ 2       3£ n £15      16 £ n £ 30     31£ n £ 50    51£ n £ 60    61£ n £ 70  148 

    Dhadj (n)      3.0           2.0                     3.0                   4.0                   2.0                  1.0 149 

The responses are the head in the river cell (the aquifer cell that contains the river reach), the seepage 150 

rate from the river (positive if a real seepage and negative otherwise for return flow) and the leakance 151 

coefficient.  The parameters of the system are for specific yield, je  (effective porosity) 0.2, for 152 

horizontal conductivity, KH , 10 m/day, aquifer thickness below the river bottom, Dbrb , 15 m, degree 153 

of anisotropy, 
KV

KH
, 0.1, grid size, G, 120 m, river reach length, L , 40 km, and river width, 2B , 10 m.   154 

Figure 6 displays the calculated seepage values under the external excitations provided in Tables 1 and 155 

2, for 3 different scenarios.  In scenario 1 the wetted perimeter is fully preserved but the river does not 156 

penetrate the aquifer.  Degree of penetration is zero. In scenario 2 the wetted perimeter is also fully 157 

preserved but the river penetrates the aquifer.  The degree of penetration is 
H

Daq
 where Daq  is the 158 

average thickness of the aquifer in the vicinity of the river.  Finally scenario 3 corresponds to no 159 

penetration but in addition only the river bottom transmits flow, not the sides, (more or less as shown in 160 

Figure 4).  This is not a very coherent scenario and hopefully rarely used in practice. It preserves the 161 

head but not the wetted perimeter.  162 

 163 

 164 
Figure 6.  Seepage rates as a function of scenarios. 165 

Whether in the case of seepage or return flow with the added effect of penetration the exchange rate is 166 

higher.  This is amplified in this case as a result of anisotropy. The side fraction of the wetted perimeter 167 

varies as stage in the river varies but it is of the order of 28% (2/7).  One might have expected a ratio of 168 

discharges of the order of 0.28x10+0.72x1 = 3.5 compared to the case of no penetration.  However it is 169 

much smaller than that, providing evidence of numerous compensation factors. Figure 7 shows the 170 

variation of the leakances with the scenarios.  One can see that the leakance ratio is high and can be of 171 

the order of as much as 3.0 but as low as 2.0.  In Eq.(1) the factor leakance plays a role as well as the 172 

wetted perimeter and the head difference.  In this particular comparison (scenarios 1 and 2) the wetted 173 

perimeter is the same, thus the difference comes entirely from the two other factors.  Given that that 174 

the ratios of the seepages are not that high there must be a strong compensation effect that reduces 175 

the head difference more in the case of scenario 2 than in the case of scenario 1.  This makes sense 176 

because when the seepage is high the head of the receiving river cell rises quickly especially when the 177 
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head of the adjacent cell is high preventing the lateral evacuation toward the adjacent cells.   Figure 8 178 

shows the variation of head in the system and it is very quickly complex.  179 

Nevertheless the point is made that (1) the degree of penetration of the river has a significant effect on 180 

the amount of seepage and (2) very clearly the leakance coefficient is not a constant in time,  181 

independent of the surrounding conditions.  182 

 183 

 184 
Figure 7.  Variation of the leakance coefficient with the scenarios. 185 

 186 

 187 
Figure 8.  Variation of head in the system depending on scenario and on the external conditions. 188 

5.0 Additonal simulation to comfirm the previous conclusion 189 

To see a little better through the complex inter-relation between heads in the system under transient 190 

conditions a simpler, less variable, set of external conditions was imposed.  The head in the river is 191 

maintained constant at 2 m and the heads in the adjacent cells vary as a succession of pulses.  Figure 9 192 

shows the seepage rates with or without penetration.  Steady state occurs within about 15 days for the 193 
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case of penetration and 20 for the case of no penetration.  The seepage with penetration as steady state 194 

is reached is 33% higher than when penetration is neglected.  195 

 196 

 197 
Figure 9.  Seepage rates with or without penetration. 198 

Figure 10 shows the leakance coefficients.  In this case the leakance coefficient does not change much 199 

with time because the river stage remains constant in time.  The SAFE dimensionless conductance does 200 

depend on degree of river penetration but in this case only because the aquifer thickness itself varies. 201 

 202 
Figure 10.  Leakance coefficients with or without penetration 203 

Figure 11 shows the variation in the heads for this case.  The head difference is smaller in the case of 204 

river penetration but it is more than compensated by the fact that the leakance coefficient is higher by a 205 

factor of roughly 2.  206 

 207 
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 208 
Figure 11.  Dependence of head distribution on the degree of river penetration.  209 

6. Conclusion  210 

“Models fail for a variety of reasons.  Often a theoretical model is too simple to capture all the 211 

important factors that influence a system. …Even excellent models can prove to be inadequate 212 

if they fail to incorporate an essential feature. Chaos and complexity theory tell us that that 213 

very small influences, which may have been left out of the model, can have a significant effect. 214 

” (Wallach, 2017).  215 

Models will never be perfect but they are useful nevertheless.  With some effort they can be 216 

marginally improved.   Such improvement is suggested.  217 
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